
Support Vector Machines and One-Class Support Vector Machines

Support Vector Machines (SVMs) were introduced by Vapnik and co-workers [1, 2, 3, 4], and
extended by a number of other researchers. Their remarkably robust performance with respect to
sparse and noisy data makes them the choice in several applications. A SVM is primarily a method
that performs classification tasks by constructing hyperplanes in a multidimensional space that
separates cases of different class labels. SVMs perform both regression and classification tasks and
can handle multiple continuous and categorical variables. To construct an optimal hyperplane, a
SVM employs an iterative training algorithm, which is used to minimize an error function.

One-Class Support Vector Machines (OC-SVMs) are a natural extension of SVMs [5, 6]. In
order to identify suspicious observations, an OC-SVM estimates a distribution that encompasses
most of the observations, and then labels as “suspicious” those that lie far from it with respect to a
suitable metric. An OC-SVM solution is built estimating a probability distribution function which
makes most of the observed data more likely than the rest, and a decision rule that separates these
observation by the largest possible margin. The computational complexity of the learning phase
is intensive because the training of an OC-SVM involves a quadratic programming problem [2],
but once the decision function is determined, it can be used to predict the class label of new test
data effortlessly.

In our case, the observations are six-dimensional vectors: Entropy, Complexity and Fisher
Information in each of the two directions, horizontal and vertical, and we train the OC-SVM with
genuine signatures. Let Z = {z1, z2, . . . , zN} be the six-dimensional training examples of genuine
signatures. Let Φ: Z → G be a kernel map which transforms the training examples to another
space. Then, to separate the data set from the origin, one needs to solve the following quadratic
programming problem:
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(S2.1)

subject to

ν ∈ (0, 1], ξi ≥ 0, ∀i = 1, . . . , N, and (S2.2)

(w · Φ(zi)) ≥ b− ξi, ∀i = 1, . . . , N, (S2.3)

where ξi are nonzero slack variables which allow the procedure to incur in errors. The parameter
ν characterizes the solution as a) it sets an upper bound on the fraction of outliers (training
examples regarded out-of-class) and, b) it is a lower bound on the number of training examples
used as Support Vectors. We used ν = 0.1 in our proposal.

Using Lagrange techniques and a kernel function K(z, zi) = Φ(z)TΦ(zi), for the dot-product
calculations, the decision function f(z) becomes:

f(z) = sign {(w · Φ(z))− b} = sign

{
N∑
i=1

αi K(z, zi)− b

}
. (S2.4)

This method thus creates a hyperplane characterized by w and b which has maximal distance from
the origin in the feature space G and separates all the data points from the origin. Here αi are
the Lagrange multipliers; every αi > 0 is weighted in the decision function and thus “supports”
the machine; hence the name Support Vector Machine. Since SVMs are considered to be sparse,
there will be relatively few Lagrange multipliers with a nonzero value.
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Our choice for the kernel is the Gaussian Radial Base function:

K(zi, zj) = exp
(
− 1

2σ2
‖zi − zj‖2

)
, (S2.5)

where σ ∈ R is a kernel parameter and ‖zi − zj‖2 is the dissimilarity measure; we used Euclidean
distance.

The parameter σ2 = 10 was selected by 5-fold-cross validation, that its, the dataset is divided
into five disjoint subsets, and the method is repeated five times. Each time, one of the subsets is
used as the test set and the other four subsets are put together to form the training set. Then the
average error across all trials is computed. Every observation belongs to a test set exactly once,
and belongs to a training set four times. Accuracy (ACC), Area Under the ROC Curve (AUC)
and Equal Error Rate (EER) are used as performance measures [7].

In the context of signature verification one-class classification problems, a false positive occurs
when a genuine signature is erroneously classified as being atypical. The probability of false
positive misclassification is the false positive rate, which is controlled by the parameters ν in the
aforementioned OC-SVM formulation. The parameter ν can be fixed a priori and it corresponds
to the percentage of observations of the typical data which will be assigned as the Type I Error.

The R interface to libsvm in package e1071 is designed to be as intuitive as possible. In the
following we generate a toy dataset in R2, and show how to train and test an SVM classifier.

n <- 150 # number of data points

p <- 2 # dimension

sigma <- 1 # variance of the distribution

meanpos <- 0 # centre of the distribution of true signatures

meanneg <- 3 # centre of the distribution of false signatures

npos <- round(n/2) # number of true signatures

nneg <- n-npos # number of false signatures

# Generate the true and false signatures

xpos <- matrix(rnorm(npos*p, mean=meanpos, sd=sigma),npos,p)

xneg <- matrix(rnorm(nneg*p, mean=meanneg, sd=sigma),npos,p)

x <- rbind(xpos, xneg)

# Generate the labels of signatures

y <- matrix(c(rep(1, npos),rep(-1, nneg)))

Now we split the data into a training set (80%) and a test set (20%)

## Prepare a training and a test set ##

ntrain <- round(n*0.8) # number of training examples

tindex <- sample(n,ntrain) # indices of training samples

xtrain <- x[tindex,]; xtest <- x[-tindex,]

ytrain <- y[tindex]; ytest <- y[-tindex]

istrain=rep(0,n); istrain[tindex]=1

Training a SVM (one-class) using the radial basis function kernel with fixed hyper-parameters
ν = 0.1 and σ = 0.05:

library(e1071)# Functions for support vector machines

library(rpart) # Recursive Partitioning and Regression Trees
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svm.model <- svm(Type ~ ., data = trainset, type=’one-classification’,

nu=0.10, scale=TRUE, kernel="radial", gamma=0.05)

Prediction of class signatures

svm.pred <- predict(svm.model, testset[,-10])

For more details, see the Reproducible research material available at http://www.de.ufpe.br/

~raydonal/ReproducibleResearch/Signatures/Signatures.html
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