
1 Data Collection Methodology

The Twitter Search API1 was used to obtained tweets about 5, 234 news events. This encom-

passes a total of 43, 256, 261 tweets. Table 1 shows a high level description of the dataset. The

full dataset is available in http://dcc.uchile.cl/˜mquezada/breakingnews/.

News events’ property Minimum Mean Median Maximum

# of tweets 1, 000 8, 254 2, 474 510, 920
# of keywords 2 3.77 3 39
Event duration (hours) 0.12 20.93 7.46 190.43

Table 1: High-level description of the dataset of news events.

1.1 Collecting the Tweets

The data collection process entails detecting pairs of keywords from the most recent hourly

batch of news headlines (the pairs of keywords are meant to describe the events succinctly), and

then searching for tweets using the pairs of keywords as queries. We merge the search results

of ‘similar’ queries every 24 hours and form the tweets set for an event. We obtained the hourly

batch of headlines from the news media accounts on Twitter. The news accounts were obtained

by performing a search for accounts in the twitter page using ’news’ as keyword, and then

manually selecting the verified accounts resulting from the search result. Figure 1 represents

the high-level flowchart of the data collection process. A summary of this process is described

in Algorithm 1. The accounts are verified accounts on Twitter2.

In Algorithm 1, the goal of the detect keywords() module is to produce pairs of key-

words that coherently, and succinctly describes an event. Inspired by the data mining concept

of mining frequent itemsets (2), we develop an algorithm which identifies the most commonly

occurring keyword groups (or item sets) in the headlines. From the item sets, we pick the most

common keyword pairs. The algorithm is described in Algorithm 2. This algorithm finds string

intersections between headlines (intersect() in Line 5 returns the number of words present

in both sa and sb). If the common set of words has sufficient Jaccard similarity to any of the

existing item sets, then the common set of words are added to that item set. If not, a new item

set is created (Line 11). During the process of identifying the most commonly occurring item

sets, we also track how many times each keyword has been added to an item set, namely, the

score of the keyword. The score of each item set is the average of the scores of its keywords.

Once the item sets have been identified, we select the top 2 keywords from each of the top six

1http://dev.twitter.com (Accessed: August 25, 2015)
2Verified accounts on Twitter establish authenticity of identity of key individuals and organizations.

1

http://dcc.uchile.cl/~mquezada/breakingnews/
http://dev.twitter.com


item sets and use them for searches. We preprocess the headlines to remove duplicates, stop-

words, punctuation, convert everything to lower case, and subject the text through the process

of stemming.

We made the choice of selecting 2 keywords since having a single keyword maybe not

define an event accurately. For example, the keyword {obama} could retrieve tweets about any

event related to Obama. However, a keyword pair like {obama, syria} describes the event more

accurately3.

The Twitter Search API imposes several restrictions on the number of searches that can be

performed in a given time duration. We produce six search threads to perform searches, one for

each keyword pair. All in all, with τ = 60 minutes in Figure 1, six new pairs of keywords are

discovered from the most recent batch of headlines, and then we query for tweets in the Twitter

Search API using these keywords over the next one hour.

We make some notes about the data collection methodology. Firstly, there is a temporal

sensitivity to the data collection methodology. For example, one of the keyword pairs obtained

as soon the Malaysian airlines jet disappeared was {plane,missing}. Although this keyword

pair does not specifically refer to the Malaysian airlines jet, it is likely that the tweets retrieved

from searching for this pair will indeed be about the Malaysian airlines plane that went missing,

since the search is performed as and when the event breaks out. Secondly, Algorithm 2 may

return multiple pairs of keywords (possibly different pairs) describing the same event. Some

pair examples of keywords produced when there was a bomb threat at Harvard University in

December 2013 were {harvard, evacuated}, {harvard, explosives}, etc. How do we merge the

keyword pairs which belong to the same event? In order to address this, we collect all the pairs

obtained in the past 24 hours, and build a graph with keywords as nodes, and keyword pairs (as

obtained from Algorithm 2) as edges. We then discover the connected components of this graph,

and treat each connected component as an “event”4. The set of tweets obtained by merging the

tweets from each of the keyword pairs is the set of messages associated with the event. Figure

4 is an example component formed on December 16, 2013. It illustrates the merge of smaller

keyword pairs into larger components for two events. One was the bomb threat at Harvard

University, and the other was about the attack on police in the Xinjiang province in China.

1.2 Cleaning the Data

The data was preprocessed to reduce the noisy and irrelevant tweets.

3Having more than two keywords may impose too much of a restriction on the query, leading to little or no

tweets in the retrieval.
4For the rest of the document, the terms connected component and event are used interchangeably. Both of

them refer to the definition of event given in the main article.

2



detect_keywords()

Tw
it

te
r 

S
e
a
rc

h
 A

P
I

{martin, jonathan}

{malaysia, flight}

{chow, toronto}

{malaysia, air}

{missing, flight}

{airlines, missing}

Tweets

Tweets

Tweets

Tweets

Tweets

Tweets

Figure 1: This figure illustrates the high level data collection process. Headlines are col-

lected every hour, and 6 keyword pairs are chosen to search for tweets. These keyword

pairs are detected with the goal of concisely representing queries for an event.

Algorithm 1 data collection()

Input: stream of headlines.

Output: data structures {H1,H2, . . .}, with H.keywords = keyword pair, and H.tweets = set

of tweets

1: i← 0, j ← 0
2: loop

3: S ← headlines for hour-i

4: keyPairs← detect keywords(S) {keyPairs is a list of keyword pairs.}
5: for k = 0 to len(keyPairs)−1 do

6: Hj.keywords← keyPairs[k]
7: Hj.tweets←search(Hj.keywords) {using Twitter Search API}
8: j ← j + 1
9: end for

10: i← i+ 1
11: end loop

3



Algorithm 2 detect keywords()

Input: A set of M sets of words, S = {H1, H2, . . . , HM}, positive integers k, η

Output: k sets of keywords, G = (I1, I2, . . . , Ik)
1: Ii ← ∅ for i = 1, 2, . . . , k
2: scorei ← empty dictionary for i = 1, 2, . . . , k
3: i← 1
4: for every pair of headlines {Ha, Hb} ∈ S such that |Ha ∩Hb| ≥ η do

5: G ← Ha ∩Hb

6: j ← argmaxj |Ij ∩ G|
7: if |Ij ∩ G| ≥ η then

8: Ij ← Ij ∩ G
9: scorej[w]← scorej[w] + 1 for all w ∈ Ij

10: else

11: Ii ← G
12: scorei[w]← 1 for all w ∈ Ii
13: i← i+ 1
14: end if

15: end for

16: total scorei ←
∑

w∈Ii
scorei[w] for i = 1, 2, . . . , k

17: return G← (Ii sorted by total scorei)

1.2.1 Special Stopwords: Articulation Words

During the data collection process, sometimes unrelated events were joined together with key-

words that was common to both events.

Typical stopwords such as “the” and “a” were removed during preprocessing the news head-

lines. However, there are other words which occur quite commonly in news headlines. For

example, words like “watch”, “live”, or “update” are common to express things like “watch this

video”, “we are live on TV”, or to update a previous headline with more information. Such

words could possibly incorrectly connect two or more very different events as one. Example:

“Watch Jim Harbaugh’s press conference live”5 and “WATCH LIVE: Of the 48 people being

monitored for contact with Dallas patient, no one is showing any symptoms”6. We call such

words articulation words We now delve into understanding how and when these words occur,

and how to subsequently identify and remove them in the preprocessing step, just as we would

a stopword.

It is well known that tf-idf (1) is a statistic of a word that indicates how important that word

is in a given document. Intuitively, if a word appears in all the documents, then its statistic is

generally low in all the documents. However, if the word appears in very few documents, its

5https://twitter.com/49ers/status/519202023628374016 (Accessed: August 25, 2015)
6https://twitter.com/PzFeed/status/519203692898435072 (Accessed: August 25, 2015)

4

https://twitter.com/49ers/status/519202023628374016
https://twitter.com/PzFeed/status/519203692898435072


statistic in those documents is fairly high, indicating that the word is somehow representative

of the content of the document. It turns out the articulation words do not occur often enough

for them to be detected by regular tf-idf, but do occur enough times for them to falsely relate

several unrelated events together. To identify a group of those keywords, we used a modified

tf-idf to detect them from the headlines.

The modified version of tf-idf, what we refer as maxtf-idf, is meant to assign more weight to

the terms that are frequent in any document. For instance, tf-idf of a term in a document tries

to assign a weight related to how “rare” that term is in the whole collection, and how frequent

the term is in that document, thus indicating how representative the term is of the document.

On the other hand, we want to place a higher weight on a term if its frequency is higher in any

other document, relative to the frequency in the current document. With that in mind, we want

to identify terms that might be “adding noise” to the corpus and hence merge unrelated events

together.

The definition of maxtf is as follows:

maxtf(t, d,D) = 0.5 +
0.5 +max{f(t, d′) : d′ ∈ D}

max{f(w, d) : w ∈ d} (1)

and for idf, the usual formula:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}| (2)

where t is a term, d is a document, and D is the corpus of all documents. In this case, we set

t as a keyword, d as the set of keywords of one hour of a given day, and D the set of documents

of that day.

After identifying such words, the idea is to disconnect the components connected by those

words. The process is to disconnect each component by the word with top normalized 1 −
maxtf-idf score each time until the component could not be disconnected further. We add the

top scoring words to our list of stopwords. These words are hence ignored from the subsequent

runs of the data collection methodology. In Figure 2 there are two examples of this process to

identify the words.

1.2.2 Discarding Irrelevant Tweets

Due to the capabilities of the REST API, the tweets collected can be older than the actual date

of the event detected. Hence, some tweets can be very old and not relevant to the event itself.

This may lead to inaccuracies in predictions when using the early features.

This problem is illustrated in Figure 3, Note that the first 5% of the tweets take an unusually

large portion of the duration of the entire event. This suggests that we are collecting tweets

which existed much before the event broke out, and hence are possibly irrelevant. Once we

discard the first 5% of tweets, we observe that each segment of the event (first 5%, the next 5%,

etc.) occupies roughly the same duration of the entire event.

5



found
white

action
syrian

york
dead

russia
house

updates
strike
page
front

military
weapons

attack
new

chemical
obama

syria
live

says

0.00 0.25 0.50 0.75 1.00

1 − maxtfidf

K
ey

w
or

ds

Top keywords in 2013−08−27

attacks
tax

syria
000

bedroom
cable
park
say

speech
weapons
hurricane
chemical

york
president
updates

watch
obama

page
front
new
live

0.00 0.25 0.50 0.75 1.00

1 − maxtfidf
K

ey
w

or
ds

Top keywords in 2013−09−11

Figure 2: Stopwords detection. Normalized 1−maxtf-idf score for data from August 27th

(left) and August 28th (right) of 2013. The top score words for both plots are “says” and

“live”. We used the top score words to disconnect connected components of events.

0

50

100

150

t5% − t0 t10% − t5% t20% − t10% t40% − t20% t100% − t40%

Early Dataset Differences

D
ur

at
io

n 
[h

ou
rs

]

Dataset

5% removed

Original

Figure 3: Duration differences of events. The x-axis represents the categories of datasets:

the first one (t5%-t0) represents the difference of time between the timestamp of the oldest

tweet and the newest tweet in the first 5% of the tweets. The next one (t10%-t5%) corre-

sponds to the difference between the newest tweet in the first 10% and the newest tweet

in the first 5% of data, etc. After removing the first 5% of data, the time differences are

roughly the same across all datasets.

6



1.3 Validation of Data Collection

We performed experiments validating that merging keywords by forming connected compo-

nents indeed produced meaningful groups of keywords representing an event. As a baseline,

we used components obtained by merging random keyword pairs together. We evaluated how

well a cluster is formed from the set of tweets obtained from connected components, comparing

the cluster to the set of tweets obtained from random components. Connected components are

expected to merge keyword pairs that belong to the same event, and hence would make better

clusters when compared to merging random keyword pairs. The results are displayed in Fig-

ure 5. In this figure, each plot depicts a different metric that evaluates the quality of a cluster.

These clustering metrics are summarized in Table 2. For better interpretation and visual clarity,

in each of the plots, we sorted the clustering metrics obtained via connected components. We

then rearranged the clustering metrics for the baseline according to the sorting order obtained

from connected components. (This is the reason why the blue line is monotonically increas-

ing.) This experiment was performed on one month of data (there are approximately 30 data

points in each plot) between August 2013 and September 2013. We took all the keyword pairs

obtained in a day and found the connected components as in Figure 4. For random components,

we merged the keyword pairs randomly. We took precautions to make sure that the size of the

connected components and random components per day were comparable. That is, if we had

connected components of sizes 6, 6, and 5 formed from keyword pairs on particular day, we

made sure that similarly sized random components were also formed from the keyword pairs of

the same day. Also, to make sure that tweets from any one keyword pair do not dominate the

tweet set, we sampled an equal number of tweets from each keyword pair, and the same sample

of tweets is used to calculate the clustering metrics in both the connected components approach

and the random components approach. The random baseline has been averaged over 3 different

rounds of experimentation.

2 VQ Event Model

We introduce a novel vectorial representation based on a vector quantization of the interarrival

time distribution, which we call “VQ-event model”. The most representative interarrival times

are learned from a large training corpus. Each of the learned interarrival times is called a

codeword, and the entire set of the learned interarrival times, the codebook.

We represent an event e, belonging to a collection of events E , as a tuple (Ke,Me), where

Ke is a set of keywords andMe is a set of social media messages. Both the keywords and the

messages are related to a real-world occurrence. As explained in Section The keywords are

extracted in order to succinctly describe the occurrence, and the messages are posts from users

about the event.

To learn the most representative interarrival times we perform the following: for each e ∈ E
with messagesMe = [me

1,m
e
2, . . .m

e
n] and their corresponding time-stamps [te1, t

e
2, . . . t

e
n] where

ti ≤ ti+i∀i ∈ [1, n], we compute all the interarrival times dei = tei − tei−1 (the value of t0 is

7



probe

china

clash

given

yard

university
buildings

alert

harvard

threat
bomb

explosives

evacuated

xinjiang

around

monday

people

attacks

Figure 4: This figure illustrates how we merge keyword pairs which represent the same

event into larger components.

Name Metric Meaning

I1
∑k

i=1
1
ni

∑

(u,v)∈Si
sim(u, v) Higher value is better

I2
∑k

i=1

√

∑

(u,v)∈Si
(u, v) Higher value is better

E1

∑k

i=1 ni

∑
v∈Si,u∈S sim(u,v)√∑

(u,v)∈Si
sim(u,v)

Lower value is better

G1

∑k

i=1

∑
v∈Si,u∈S sim(u,v)

∑
(v,u)∈S sim(v,u)

Lower value is better

G
′

1

∑k

i=1 n
2
i

∑
v∈Si,u∈S sim(v,u)

∑
(u,v)∈Si

sim(u,v)
Lower value is better

H1
I1
E1

Higher value is better

H2
I2
E1

Higher value is better

Table 2: This table lists the clustering metrics used in Figure 5.

8



0.0 × 10+0

5.0 × 10+2

1.0 × 10+3

1.5 × 10+3

2.0 × 10+3

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(a) I1

0 × 10+0

1 × 10+3

2 × 10+3

3 × 10+3

4 × 10+3

5 × 10+3

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(b) I2

0 × 10+0

2 × 10−4

4 × 10−4

6 × 10−4

8 × 10−4

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(c) H1

0.0 × 10+0

5.0 × 10−4

1.0 × 10−3

1.5 × 10−3

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(d) H2

0

20

40

60

80

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(e) G1

0.0 × 10+0

5.0 × 10+7

1.0 × 10+8

1.5 × 10+8

2.0 × 10+8

0 10 20

Connected component ID

M
et

ric
 v

al
ue

Connected Components

Random Components

(f) G′
1

Figure 5: Each plot in this figure compares the quality of the cluster of tweets obtained

from connected components and random components. The actual metric is shown in Ta-

ble 2. In I1, I2, H1, H2 higher value is better. In G1, G
′

1, lower value is better. For visual

clarity, the values obtained from connected components were sorted in ascending order,

hence the blue line is monotonically increasing. The values obtained were rearranged in

the same order as well.

9



considered equal to t1 for initialization purposes). Then, the values of dei for all events in E are

clustered to identify the most representative interarrival times.

Once the most representative interarrival times have been learned, the vector quantizations

for each event is produced as follows: for each event, obtain all the interarrival times, and

quantize each of the interarrival times to the closest codeword in the codebook. This process

is summarized in Algorithm 3. Line 1 collects all of the interarrival times for all the events in

E in f. Line 2 is a clustering algorithm which takes f and the number of clusters k as inputs

and returns the centroids of the clusters as the output in c. The centroids can be thought of as

the most representative interarrival times for the event set E . After that, the interarrival times of

each event e is vector quantized in terms of the centroids to obtain a k-dimensional real valued

representation of the event (Line 4). In this representation, each entry is percentage of messages

with that particular codeword as the interarrival time.

Algorithm 3 learn representation()

Input: Event set E , and number of codewords k in the codebook.

Output: A representation in R
k of each event e = (Ke,Me) ∈ E .

1: f← {dei |me
i ∈Me, e ∈ E}

2: c← cluster(f, k)

3: for e ∈ E do

4: e← vq(dei , c )

5: end for

3 High Activity Vs Low Activity Events

Once the events are converted into their VQ-event model representation, the goal is to identify

groups of events such that all events belonging to a group have produced similar levels of

activity in the social network. Events are considered to have produced similar levels of activity

if the interarrival times between their social media posts are similarly distributed, implying

a very much alike collective reaction from users to the events within the group. In order to

identify groups of similar events, we perform clustering the event models. We sort the resulting

groups of events from highest to lowest activity, according to the concentration of social media

posts in the bins that correspond to short interarrival times. We consider the events that fall in

the top cluster to be high-activity events as most of their interarrival times are concentrated in

the smallest interval of the VQ-event model. Thus we end with four groups of events: high,

medium-high, medium-low and low. shows a heatmap of the interarrival relative frequency for

each cluster.

Through this section, we analyze different features for each of the event categories and

compare them both qualitatively and quantitatively. We peformed two-tailed t-tests for a variety

of features for events in the high-activity category, and compare it with the average values for

the remaining events.

10



low
(1531)

medium−low
(1772)

medium−high
(1505)

high
(426)

  0.000
  0.017

  0.033
  0.050

  0.067
  0.083

  0.100
  0.117

  0.133
  0.158

  0.192
  0.225

  0.250
  0.267

  0.292
  0.332

  0.391
  0.472

  0.588
  0.722

  0.859
  1.010

  1.263
  1.618

  2.149
  3.018

  4.678
  7.369

 11.357
 19.267

 36.072
 68.605

168.333

Representative interarrival times learned by the VQ−event model [minutes]

Le
ve

l o
f a

ct
iv

ity
(t

ot
al

 n
um

be
r 

of
 e

ve
nt

s)

Figure 6: The events were clustered to obtain four groups of events based on their interar-

rival times. Each row in the figure is the average representation of all events in that cluster.

A darker cell represents a higher value.

3.1 Information Forwarding Characteristics

We found that the high-activity events possess more information forwarding characteristics than

other events. We present four features which support this argument. The features, their descrip-

tion and their values are listed in Table 3.

The retweet count is generally higher for high-activity events. This feature is the frac-

tion of retweets present in the event, log-normalized by the total amount of tweets in the event.

A higher value suggests that people have a greater tendency to spread the occurrence of these

events, and forward this information to their followers.

The tweets retweeted is lower for high-activity events than for the rest. This feature is

the number of tweets which have been retweeted, log-normalized by the total number of tweets

in the event. This suggests that the high amount of retweets for the high-activity events actually

originates from fewer tweets. This suggests that fewer tweets become popular and are retweeted

several times.

The retweets most retweeted is the total number of retweets of the tweet that has

been retweeted the most. This number is much higher for high-activity events than for low-

activity events, suggesting that the most popular tweet indeed becomes very popular when the

event is of high-impact.

3.2 Conversational Characteristics

We found that high-activity events in general tend to generate more conversation between users

than the events in other categories. We observe this behavior through several features. Refer to

Table 4.

The features replies and norm replies both count the number of replies, but have

been normalized slightly differently. Both have a higher value for high-activity events suggest-

ing that high-activity events in general tend to spark more conversation between the users. The

11



Feature Name Description high-activity, others Hypothesis, p-value

retweet count

log(total retweet count

in the event divided by total

tweets in the event)
2.205, 1.473 1, p = 0

tweets retweeted

log(number of tweets

retweeted divided by

total tweets in the event)
−1.091,−0.964 1, p = 2.7× 10−5

retweets most retweeted
number of tweets of the most

retweeted tweet
284.491, 40.261 1, p = 0

Table 3: (Refer to Section 3.1.) This table lists all the features which characterize the

information forwarding aspect of an event. In general, high-activity events tend to have

higher values for information forwarding features than other events.

Feature Name Description high-activity, others Hypothesis, p-value

replies log(total replies divided by total tweets) −1.4016,−1.6474 1, p = 10−4

norm replies
log(number of replies divided by

total number of unique users)
−1.5796,−1.9294 1, p = 6.7× 10−4

tweets replied
log(number of tweets which generated

replies divided by total tweets)
−1.7784,−2.0668 1, p = 0.001

uniq users replied
log(unique users who have written

a reply divided by total tweets)
−1.7524,−2.0352 1, p = 0.001

Table 4: (Refer to Section 3.2.) This table lists all the features which characterize the con-

versational aspect of high-activity and remaining events. Using these features, we argue in

Section 3.2 that high-activity events tend to invoke more conversation amongst users than

their counterparts.

12



Feature Name Description high-activity, others Hypothesis, p-value

uniq words
log(total unique words

divided by total tweets)
−0.1982, 0.1651 1, p = 0

uniq chars
log(total unique characters

divided by total tweets)
2.0009, 2.0456 1, p = 0

uniq hashtags
log(number of unique hashtags

divided by total tweets)
−1.1126, 0.8761 1, p = 0

uniq urls
log(number of unique urls

divided by total tweets)
−0.7194,−0.4951 1, p = 0

Table 5: (Refer to Section 3.3.) This table summarizes all the features that were used to

study the topical focus characteristics of high-activity events.

tweets replied feature counts the number of tweets which have generated replies (it has

been log-normalized by the total number of tweets in the event). This is also higher for high-

activity indicating that such events on average have more tweets which invoke a reply from

people. The uniq users replied feature counts the number of unique users who have par-

ticipated in an conversation. Again, this number is found to be higher for high-activity events

than for others suggesting that more users tend to engage in a conversation about these events.

All these features collectively suggest that high-activity events tend to have a conversational

characteristic associated with them.

3.3 Topical Focus Characteristics

We find that high-activity events have a lot more focus in terms of the topical content than the

remaining events. This possibly suggests that when a news item is sensational, people seldom

deviate from the topic of the news to other things.

We used four features listed in Table 5 to study the topic focus characteristics of high-impact

events.

The number of unique words (uniq words) and characters (uniq chars) for high-activity

events is lower than the remaining events suggesting that the information content for high-

activity events is more focused than for the remaining events (as they do not need a diverse

vocabulary). Hashtags on Twitter are a sequence of characters that follow the # symbol. Conven-

tionally, their purpose is to indicate the topic of the tweet. Again, this number (uniq hashtags;

log-normalized by the total number of tweets) is lower for the high-activity events than for the

remaining events. The number of unique URLs (uniq urls; which can be taken to interpret

similar semantics as the hashtags) is also lower for high-activity events than for the rest.

3.4 Early prediction of high-activity events

The results from sections 3.1, 3.2 and 3.3 suggest that high-activity events differ considerably

from other events in terms of how they are received by the users and in terms of the response

13



Early 5% Tweets All Tweets

high-activity others high-activity others

high-impact 194 232 230 196
non-high-impact 43 4 765 47 4 761

Table 6: Confusion matrix while predicting the top 8% of events as high-activity. The

predictions were made using the early 5% of the tweets, and by using all the tweets from

the event.

Early 5% Tweets All Tweets

FP-Rate Precision Recall ROC-area FP-Rate Precision Recall ROC-area

high-activity 0.009 0.819 0.455 0.900 0.01 0.830 0.540 0.945

others 0.545 0.954 0.991 0.900 0.460 0.960 0.990 0.945

Table 7: Classification results of detecting whether an event from the top 8% is high-impact

or not while predicting from features extracted from the earliest 5% of the tweets and from

all the tweets belonging to the event.

they invoke from the network.

In the next phase, our goal is to supervised machine learning only the early tweets of an

event to predict whether an event will generate high-activity or not. A list of all the features used

for classification is shown in Table 8. The classification was carried using logistic regression

provided by the Weka package. The data was split approximately into 60− 20− 20 of training,

test and validation sets and the results were averaged over 5 runs of experiments.

Table 7 illustrates the prediction results from the earliest 5% of the tweets tweets, and from

using all the tweets. We the false positive rate using only the early tweets is almost as good as

the false positive rate using all the tweets. The same observation holds for the metrics precision

and ROC-area as well. However, we observe an 18% increase in the recall (0.455 to 0.540).

This suggests that some high-activity events perhaps do not start displaying their unique char-

acteristics well enough in their early stages.

Feature Name Normalized By Normalization Method

component size None

total seconds total tweets log(x)− log(y)
total tweets None

total retweets total tweets log(x)− log(y)
total tweets retweeted total tweets log(x)− log(y)
retweets most retweeted total retweets log(x)− log(y)
total mentions total tweets log(x)− log(y)
total unique mentions total mentions log(x)− log(y)
total tweets with mention total tweets log(x)− log(y)
Continued on next page

14



Table 8 – Continued from previous page

Feature Name Normalized By Normalization Method

total tweets with mostfrequent mention total tweets with mention log(x)− log(y)
total hashtags total tweets log(x)− log(y)
total unique hashtags total hashtags log(x)− log(y)
total tweets with hashtag total tweets log(x)− log(y)
total tweets with mostfrequent hashtag total tweets with hashtag log(x)− log(y)
total urls total tweets log(x)− log(y)
total unique urls total urls log(x)− log(y)
total tweets with url total tweets log(x)− log(y)
total tweets with mostfrequent url total tweets with url log(x)− log(y)
total unique verified users total verified users log(x)− log(y)
total verified users total tweets log(x)− log(y)
total unique users total tweets log(x)− log(y)
total replies total unique users log(x)− log(y)
total tweets first replied total tweets log(x)− log(y)
total unique users replied total unique users log(x)− log(y)
total tweets replied total tweets log(x)− log(y)
total words total tweets log(x)− log(y)
total unique words total words log(x)− log(y)
total characters total tweets log(x)− log(y)
total rt count total tweets log(x)− log(y)
total fav count total tweets log(x)− log(y)
total positive sentiment total tweets x/y
total negative sentiment total tweets x/y

Table 8: List of features used for characterization and classification. The “Normalization

Method” column corresponds to the method used to normalize the value of the first col-

umn using the value of the second column. For example, the total number of retweets was

normalized dividing it by the total number of tweets, and then taking the logarithm. Zero

values were replaced by 10−8.

References and Notes

1. Karen Sprck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of

Documentation, 28:11–21, 1972.

2. Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining, (First Edition). Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

15


	Data Collection Methodology
	Collecting the Tweets
	Cleaning the Data
	Special Stopwords: Articulation Words
	Discarding Irrelevant Tweets

	Validation of Data Collection

	VQ Event Model
	High Activity Vs Low Activity Events
	Information Forwarding Characteristics
	Conversational Characteristics
	Topical Focus Characteristics
	Early prediction of high-activity events


