S4 Figures

S2 Fig A. ECA70 response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the ECA_{70} model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

S2 Fig B. ECA 150 response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the ECA_{150} model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

S2 Fig C. ECA full response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the $\mathrm{ECA}_{\text {full }}$ model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

S2 Fig D. BIO ${ }_{70}$ response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the BIO_{70} model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

S2 Fig E. BIO ${ }_{150}$ response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the BIO_{150} model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

S2 Fig F. BIOfull response curves.

Exemplary mean responses of the 14 cross-validation runs \pm one standard deviation for one replicate run of the $\mathrm{BIO}_{\text {full }}$ model. The curves show the logistic output as a function of each variable, while all other variables are kept at their average value. Note different scales on the y-axis.

