
S2 Appendix. Observability matrix made from coordinate transformation.
An equivalent phase portrait of the original system can be reconstructed using any
individual variable of the system and its derivatives. Three mappings can be
constructed, each corresponding to one of the system variables J, A and P ,

ΦJ =


X = J

Y = J̇ = f1(J,A, P )

Z = J̈ =
∂f1
∂J

f1(J,A, P ) +
∂f1
∂A

f2(J,A, P ) +
∂f1
∂P

f3(J,A, P )

ΦA =


X = A

Y = Ȧ = f2(J,A, P )

Z = Ä =
∂f2
∂J

f1(J,A, P ) +
∂f2
∂A

f2(J,A, P ) +
∂f2
∂P

f3(J,A, P )

ΦP =


X = P

Y = Ṗ = f3(J,A, P )

Z = P̈ =
∂f3
∂J

f1(J,A, P ) +
∂f3
∂A

f2(J,A, P ) +
∂f3
∂P

f3(J,A, P )

(1)

The Jacobian matrix of the coordinate transformation map Φx can be interpreted as
observability matrix Ox where x ∈ {J, A, P}. It should be pointed out that if the
Jacobian matrix of Φx is singular, then there is no global diffeomorphism between the
original state space and the reconstructed one. Hence, a rank-deficient observability
matrix says that there are singularities or “blind spots” in the reconstructed space from
which we cannot figure out what is going on in the original space just by measuring that
particular variable.

The expressions for coordinate transformations of Eqns (1) are



ΦJ =



X = J

Y = J̇ = bA− J

1 + J2
− µJJ

Z = J̈ =

[
−(1− J2)

(1 + J2)2
− µJ

]
(bA− J

1 + J2
− µJJ) + b(

J

1 + J2
−AP − µAA)

ΦA =



X = A

Y = Ȧ =
J

1 + J2
−AP − µAA

Z = Ä =
1− J2

(1 + J2)2

[
bA− J

1 + J2
− µJJ

]
− (µA + P )

[
J

1 + J2
−AP − µAA

]
−A(cAP − µPP )

ΦP =



X = P

Y = Ṗ = cAP − µPP

Z = P̈ = cp

[
J

1 + J2
−A(P + µA)

]
+ P (cA− µP )2

(2)


