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Supporting Text S1 

Materials and methods 

Model calibration 

In this manuscript, we introduce a model to investigate the vital dynamics of Culex pipiens during a typical 

breeding season by considering temperature-dependent mortality and developmental rates both for immature 

and mature/adult stages of mosquito and by assuming that the diapause rate depends on daylight duration. 

The lengths of the developmental periods associated to different mosquito life stages (i.e. for any 𝑠 ∈ 𝑆 =

{𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝑃}) at different temperatures were calibrated according the following procedure. Given the 

length of developmental period 𝐿𝑠 for temperatures 𝑇 ∈ 𝒯 = {7°C, 10°C, 15°C, 20°C, 25°C, 30°C, 33°C} as 

observed in [1], we assume that 𝐿𝑠(𝑇) = 𝑓𝑠(𝑇; 𝜔) + 𝜀𝑇 where 𝑓𝑠(𝑇; 𝜔) is a parametric function of the 

temperature 𝑇 (𝜔 indicates the set of free model parameters defining 𝑓) in a suitable set of functions, 

comprising exponential, parabolic and logistic functions, and 𝜀𝑇 is a random sample of a 0 mean normal 

distribution with unknown variance 𝜎2. For each considered life stage, we calibrate the function 𝑓𝑠(𝑇; 𝜔) by 

minimizing the square error 𝜑 between predicted and observed length of the period which is defined as 𝜑=

∑ (𝐿𝑠(𝑇) − 𝑓𝑠(𝑇; 𝜔))
2

𝑇∈𝒯 .  

Uncertainty of estimated parameters (i.e., 𝜔) was computed following a bootstrap procedure similar to the one 

adopted in [2, 3]. In particular, we simulated 100 different {𝐿𝑠(𝑇)}𝑇∈𝒯 by adding an error sampled from a 

normal distributed 𝑁(0, 𝜎2) to the best interpolation 𝑓𝑠(𝑇; 𝜔̃) where the variance 𝜎2 was taken as the average 

of the estimated residuals associated to the best interpolation of the model i.e., the average of the quadratic 

differences (𝐿𝑠(𝑇) − 𝑓𝑠(𝑇; 𝜔̃))
2
. Finally, for each simulated {𝐿𝑠(𝑇)}𝑇∈𝒯 we repeated the optimization 

procedure described above. Obtained estimates of 𝑙𝑠(𝑇; 𝜔) were used to compute the rate of development as 

𝜏𝑠(𝑇; 𝜔) = 1/𝑙𝑠(𝑇; 𝜔).  

The same technique was applied to estimate the probability p for a fully developed pupa to become a 



diapausing adult as function of the daylight duration using the data presented in [4] and to estimate the 

mortality rates of all immature stages as functions of temperature.  

However, since mortality data for different mosquito life-stages were available as survival probabilities, an 

additional step was required to estimate the associated mortality rates. The survival probability for different 

mosquito life-stages observed in [1, 5] was obtained in lab conditions by following a cohort of n individuals 

until all of them would either die or develop in the subsequent life stage. 

In our analysis, we estimate the mortality rates associated to eggs, different larval instars and pupae by 

maximizing the likelihood of observing the number of surviving individuals k obtained in the lab experiments at 

fixed temperatures, given the initial number of individuals n and a known developmental rate for each 

temperature and each mosquito life-stage.  

For instance, specializing model M to the case of a cohort of pupae kept at a fixed temperature 𝑇̅ and starting 

at time 0 with the initial value 𝑛(𝑇̅), one sees that, following the approach described in [6], the probability that 

a pupa will eventually develop into an adult (instead of dying) is 𝑝(𝑇̅) =
𝜏𝑃(𝑇̅)

𝜇𝑃(𝑇̅)+𝜏𝑃(𝑇̅)
 , so that the number of 

pupae developing into adults will be a binomial of parameters 𝑛(𝑇̅) and 𝑝(𝑇̅). 

A simple computation shows then that the maximum likelihood estimate of 𝜇𝑃(𝑇̅) is 

𝜇𝑃(𝑇̅) =
𝜏𝑃(𝑇̅)(1−𝑝)

𝑝
  with p=k/n. 

Estimates of developmental times and mortality rates at different temperatures and the diapause rate 

associated with different daylight durations are presented in Fig. A. Our analysis suggests that at higher 

temperatures, survival probabilities of all stages decrease and developmental times shorten, while longer 

daylight durations reduce the probability that a fully developed pupa becomes a diapausing adult. In the case 

of eggs and pupae, lower temperatures (i.e., below 15°C) can increase the death rate as well. 



 

Figure A. Mortality and developmental rates at different temperatures. Panels (a-l): estimated mortality rates (day-1) and 

developmental times (in days) at different temperatures for the eggs, the larval stages and the pupal stage (i.e., E, L1, L2, 

L3, L4, P). Panel (m): adult mortality rate (day-1) modeled as function of the temperature as published in [7]. Panel (n): 

probability of a fully developed pupa to become a diapausing adult, modeled as function of the daylight duration. Data 

from experiments are shown with blue dots, red lines represent the best interpolation and pink region defines the 95% 

credible intervals obtained through the bootstrap procedure described in the text. 

According to our model formulation, predictions of mosquito dynamics during each breeding season are driven 

by daylight duration (see Fig. B) and by observed seasonal temperatures (see Fig. C). The average temperature 

recorded from April 1st to September 30th during all the study period ranges from 19.3°C (2002) to 21.3°C 

(2003). 



 

Figure B. Daylight duration during a typical breeding season. Daylight duration defined as the difference between the 

time of the sunset and the time of the sunrise (in hours) from April 1 to September 30 obtained from the US Naval 

Observatory [8]. 

 

Figure C. Temperature patterns among different breeding seasons. Air mean temperatures recorded from April 1 to 

September 30 during the twelve years considered in the model. 



 

Transition probabilities 

Different life-stages of mosquito population are updated from time t to time t+1 according to the following 

procedure. Given a specific population class c we denote the set of possible transition from the class c to other 

population classes as Τ where each specific transition 𝜏𝜖Τ occurs at a specific rate 𝑟𝜏. In our simulations at each 

time step t the number of individuals k leaving the class c is drawn from a binomial distribution 

ℬ(𝑛, ∑ 𝑟𝜏𝜏𝜖Τ Δ𝑡), where n is the number of individuals in class c at time t. The number of individuals following 

the different transitions 𝜏̃𝜖Τwill then be computed from a multinomial with parameters k and 𝑟𝜏̃/ ∑ 𝑟𝜏𝜏𝜖Τ . 

For instance, in case of eggs, at each time t eggs can either develop into larval instar at a rate 𝜏𝐸  or die at a rate 

𝜇𝐸. If E is the number of eggs at time t, first one will obtain the total number of exits, k, by drawing a number 

from a binomial distribution ℬ(𝐸, 𝜇𝐸Δ𝑡 + 𝜏𝐸Δ𝑡); then the number of new larvae will be drawn from a binomial 

of parameters k and 𝜏𝐸/(𝜇𝐸 + 𝜏𝐸) (correspondingly the number of dead eggs will be a binomial of parameters 

k and 𝜇𝐸/(𝜇𝐸 + 𝜏𝐸)). 

Additional results 

The proposed model is able to well reproduce the annual variations and the high heterogeneity observed in 

mosquito population dynamics among different breeding seasons (see Fig. D).  

 

Figure D. Model fit for monthly captures. Boxplots (2.5%, 25%, 75% and 97.5% quantile and median) of fitted posterior 

distribution for Culex pipiens monthly captures. Blue dots represent the observed values. 

Fig. E shows the effects of the perturbation of the observed temperature on Culex pipiens dynamics. In 

particular, for the hotter scenarios the abundance of mosquito population in spring is higher and begins to 

increase sooner while mosquito abundance during the summer is much lower. 



 

Figure E. Effect of temperature on Culex pipiens. Predicted captures (median values) for 10 different scenarios obtained 

varying daily temperature T from T-2.5°C (light yellow) to T+2.5°C (dark red) with a step of 0.5°C Black lines represent the 

median of the fit using daily temperature T, as shown in Fig. 1 in the main text. 

The effects due to the perturbation of the density-dependent factor are shown in Fig. F. Obtained results 

suggest that an increase [decrease] of this parameter causes an upper [lower] shift of the entire curve. 



 

Figure F. Effect of the carrying capacity on Culex pipiens. Predicted captures (median values) for 10 different scenarios 

obtained changing the density-dependent factor K from 𝐾 ⋅ 0.5 (light yellow) to 𝐾 ⋅ 1.5  (dark red) with a step of 𝐾 ⋅ 0.1. 

Black lines represent the median of the fit, using K, as shown in Fig. 1 in the main text. 



 

Figure G. Study area. The map shows the location of the 44 considered sites. 



 

Figure H. Comparison of fit. Average number of weekly captured Cx. pipiens during the twenty-week survey period 

observed in Piedmont region from 2000 to 2011 (blue points) and median predictions by model simulation based on the 

estimated posterior distribution of free parameters by assuming α and β to be seasonal independent (red line) and by 

considering different α and β for each considered year (black line). 
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