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Supporting Information 2: Statistical Analysis

In this Supporting Information, we describe the statistical methodology developed for use with
iPerfusion, which takes into account the uncertainties in the measurements and includes the
‘weighted t-test’. MATLAB code for carrying out this analysis is can be provided upon re-
quest. We also provide a discussion of the reasons for our selection of approaches for reporting
statistical results.
The sources of uncertainty involved in acquiring Y and s2

Y are described in the main text.
Using these uncertainties, the average difference between the two populations, Z, its variance,
s2
Z

, and the sample variance, s2
Z , are evaluated. The number of degrees of freedom (DOF), ν,

for Z is also calculated that along with the t-statistic enables calculation of a p-value relating to
the null hypothesis, which in this case is considered to be no difference between samples. In
addition, the confidence with which Z can be stated (confidence interval, CI) and the range of
the treatment effect are evaluated.
Ultimately, the aim is to compare a ‘control’ population, A, to a ‘treated’ population, B. De-
pending on the experimental design, the data should be treated and interpreted in different
ways. Here we consider three categories of experimental design involving two samples.

1. Unpaired data from different populations: such as comparing between two independent
mouse strains or between different age groups of the same strain.

2. Unpaired data from a single population with treatment: for example, when analysing the
effect of a systemically acting drug versus vehicle, using different individuals from the
same population.

3. Paired data from a single population with treatment: for example, when analysing the
effect of a drug that can be locally delivered to one eye, whilst the contralateral eye from
the same individual serves as the vehicle treated control.

We start by describing the fundamental equations required for the statistical analysis, and then
outline the analysis for each experimental design. Equations shown in blue represent the key
relationships necessary for the final calculations.
Many of the techniques used in the following analysis require that the variable of interest be
normally distributed. For parameters which are better described as lognormally distributed,
such as outflow facility, we must carry out analysis on the log-transformed variable, Y =

ln (Cr).
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S2-1 Fundamental Equations

S2-1.1 Weighted Sample Statistics

ConsiderK values of a normally distributed parameter Zk, with an uncertainty on each sample
k of s2

Zk
. The weights wk can be defined according to

wk =
1

s2
Zk

(S2-1)

which can be normalised such that
∑
w′k = 1 according to

w′k =
wk
K∑
k=1

wk

(S2-2)

The weighted arithmetic mean is given by

Z =
K∑
k=1

w′kZk (S2-3)

which has a weighted variance given by

s2
Z

=
K∑
k=1

w′2k s
2
Zk

(S2-4)

The unbiased weighted sample variance is given by

s2
Z =

K∑
k=1

w′k
(
Zk − Z

)2
1 −

K∑
k=1

w′2k

(S2-5)

For the special case where all samples are equally weighted, as occurs when each sample has
an equivalent uncertainty, s2

Zk
, the normalised weights equal to 1/K. For this case, Equations

S2-3, S2-4 and S2-5 become consistent with the typical definitions of the unweighted arithmetic
mean, the square of the standard error of the mean and the unbiased variance, respectively.

S2-1.2 Welch-Satterthwaite Equation

When evaluating the CI and the p-value, it is necessary to consider the number of DOF associ-
ated with the measured value, given that at each stage of the analysis, we only have the sample
variance, s, rather than exact values of the population variance, σ. For a normal paired t-test,
the number of DOF is given by ν = K − 1, whilst for an unpaired t-test with similar variances,
ν = N1 + N2 − 2, where N1 and N2 are the number of samples in the two populations. In the
present approach, the weighting causes certain data points to have less influence than others,
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and hence there are effectively fewer DOF. In order to estimate an appropriate value for ν, we
use the Welch-Satterthwaite (W-S) equation. The W-S equation can be used to estimate the ef-
fective number of DOF for a variance, S2, that can be written in the form of a linear combination
of K independent sample variances, s2

k, with with coefficients dk, such that

S2 =

K∑
k=1

dks
2
k (S2-6)

The W-S equation then calculates the number of DOF for S2, νS , according to

νS ≈

(
K∑
k=1

dks
2
k

)2

K∑
k=1

(dks2k)
2

νk

=

(
S2
)2

K∑
k=1

(dks2k)
2

νk

(S2-7)

where νk is the number of DOF in the calculation of each s2
k.

S2-2 Unpaired Data from Independent Populations

In this case, there would be two populations with sample statistics Y A, s
2
A and Y B, s

2
B . The

difference between the weighted means of the two populations is given by

Z = Y B − Y A (S2-8)

We thus evaluate each population sample independently, and then combine the results.

S2-2.1 Calculating the Weights

We want to calculate the average value of Y for a sample of N eyes, Y , as an estimate of µY ,
the population mean. A simplified model for this can be written in terms of stochastic random
variables, each assumed to be independent. For each eye, i, we can write

Yi = µY + Ypop,i + Yreg,i (S2-9)

where Yreg,i is an error arising from uncertainty in the regression analysis, and Ypop,i is the
deviation in Y from µY for eye i due to inherent variability within the population, both of
which are assumed to have a zero mean. The variances can be written as

s2
Yi = s2

pop + s2
reg,i (S2-10)

as µY is an exact value and thus has no variance. Note that for the regression uncertainty,
the variance is best characterised based on the known uncertainty for that eye, s2

reg,i, whereas
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the variance in the population is best described by s2
pop, calculated over the sample as follows.

Applying Equation S2-10 over the sample using unweighted averaging yields

s2
tot = s2

pop + s2
reg (S2-11)

where s2
reg is the unweighted average measurement uncertainty and s2

tot is the total unweighted
variance in the measured values of Yi given by

s2
tot =

1

N − 1

N∑
i=1

(
Yi −

1

N

N∑
i=1

Yi

)2

(S2-12)

Thus, an approximation of the population variance based on unweighted analysis is given by

s2
pop ≈ s2

tot − s2
reg (S2-13)

Equation S2-13 indicates that the variance in the population would be overestimated if we did
not account for the measurement uncertainty, given that it is contributing to variability in the
measured Yi values. Substituting Equation S2-13 into Equation S2-10 yields

s2
Yi = s2

tot + s2
reg,i − s2

reg (S2-14)

According to Equation S2-14, the values of s2
Yi

will vary according to the relative difference of
s2

reg,i to the average s2
reg, and the effect of the weighting will decrease as s2

tot increases relative
to s2

reg. Finally, the weights are defined according to Equation S2-1 as

wi =
1

s2
Yi

(S2-15)

S2-2.2 Sample Statistics

The weighted arithmetic mean is calculated according to Equation S2-3

Y =

N∑
i=1

w′iYi (S2-16)

and the variance of Y is given by Equation S2-4

s2
Y

=

N∑
i=1

w′2i s
2
Yi (S2-17)

The unbiased weighted variance is given by Equation S2-5
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s2
Y =

N∑
i=1

w′i
(
Yi − Y

)2
1 −

N∑
i=1

w′2i

(S2-18)

Figure S2-1 shows an overview of this analysis.
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Figure S2-1: Schematic of the steps in the analysis method for unpaired data. Blue indicates control data, red
indicates ‘experimental’ data and green indicates combined data on the differences between experimental and

control cases.

S2-2.3 Degrees of Freedom

In order to calculate the CI for Y and a p-value corresponding to the null hypothesis that Z = 0,
we need to calculate νY , the number of DOF for Y . Combining Equations S2-17 and S2-14 yields
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s2
Y

=

N∑
i=1

w′2i

(
s2

tot + s2
reg,i − s2

reg

)
= s2

tot

N∑
i=1

w′2i +
N∑
i=1

w′2i s
2
reg,i − s2

reg

N∑
i=1

w′2i

(S2-19)

as s2
tot and s2

reg are constant. Using the W-S equation (Equation S2-7) gives

νY ≈

(
s2
Y

)2

(
(s2tot)

2

N−1 +
(s2reg)

2

N

)(
N∑
i=1

w′2i

)2

+
N∑
i=1

(
w′2

i s
2
reg,i

)2

mi−r

(S2-20)

where mi is the number of data points in the regression fitting for each Yi value and r is the
number of free parameters in the model, in this case 2.

S2-2.4 Reporting Statistics for a Population

When reporting the value of Y , it is preferable to also report its CI or margin of error (ME,
defined as the half width of the CI), in order to establish how well the mean value is known.
The (1 − α) 100% ME for the weighted mean of a given population is given by

MEY ,(1−α) = sY tνY ,(1−α/2) (S2-21)

where tνY ,(1−α/2) is the inverse of Student’s t cumulative distribution function with νY degrees
of freedom evaluated at 1 − α/2. As the sample size increases, tνY ,(1−α/2) will tend towards
1.96, the corresponding value for the normal distribution.

It is also beneficial to provide an indication of the range of values within the population. When
using standard unweighted analysis, a multiple of the standard deviation of Y ,

√
s2

tot would be
reported to indicate the range of values within the population. However, as shown by Equation
S2-11, this would be an overestimate as it would inherently include the additional uncertainty
arising from the measurements. Using weighted analysis provides s2

Y , an improved estimate
of the sample variance as compared to the unweighted sample variance, s2

tot. Thus, following
the same logic as Equation S2-13, an improved estimate of the population variance is given by

s2
pop = s2

Y − s2
reg (S2-22)

We will report the spread in the population using ±2spop, which is an indication of the interval
within which 95% of facilities might be expected, which we refer to as two-sigma. For a given
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population, we would therefore report the weighted mean and the 95% confidence interval on
the weighted mean along with spread in the population:

Y ± MEY ,95

(
2spop

)
S2-2.5 Treatment Effect

Having defined Y A for the NA eyes in the control sample, Y B for the NB eyes in the treated
sample and the corresponding measures of spread, the difference between the two populations
can be analysed. The difference between the weighted sample means, Z = Y B − Y A, is the
best estimate of the difference between the average of the two populations. The variance in Z
is given by

s2
Z

= s2
Y B

+ s2
Y A

(S2-23)

The W-S equation (Equation S2-7) yields the number of degrees of freedom for s2
Z

,

νZ ≈

(
s2
Z

)2

(
s2
Y B

)2

νY B

+

(
s2
Y A

)2

νY A

(S2-24)

where νY A
and νY B

are given by Equation S2-20. The ME for Z is then given by

MEZ,(1−α) = sZ tνZ ,(1−α/2) (S2-25)

In this context, the sum of the two independent populations variances

s2
pop,Z = s2

pop,A + s2
pop,B (S2-26)

would not have a useful interpretation. We would therefore not report the population variance
of Z and only report Z and its 95% ME as

Z ± MEZ,95

S2-3 Unpaired Data from a Single Population with Treatment

Perfusion with a drug or other treatment would introduce an additional random variable into
the analysis of the treated population, B, representing the variability in the effect of the treat-
ment itself.
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S2-3.1 Weights, Sample Statistics and Degrees of Freedom

The control population, A, would be analysed as described in Section S2-2. For population B,
Equation S2-9 must be modified to give

YB,i = µYB + Ypop,B,i + Yreg,B,i + Ytre,i (S2-27)

where Ytre,i is an additional deviation from µYB occurring due to the effect of the treatment.
The variances are given by

s2
YB,i

= s2
pop,B + s2

reg,B,i + s2
tre (S2-28)

where the variance of the treatment effect is best described by s2
tre. The unweighted average of

Equation S2-28 across the sample is given by

s2
tot,B = s2

pop,B + s2
reg,B + s2

tre (S2-29)

Thus, an approximation of the unweighted variance for population B is given by

s2
pop,B ≈ s2

tot,B − s2
reg,B − s2

tre (S2-30)

Combining Equation S2-28 and S2-30 yields

s2
YB,i

= s2
tot,B + s2

reg,B,i − s2
reg,B (S2-31)

which is identical to Equation S2-14 applied to population B because s2
tre cannot be separated

from s2
pop,B . Thus, the calculation of the weights, sample statistics and DOF for population B

would follow the same approach used for population A (Equations S2-15 to S2-18 and S2-20).

S2-3.2 Treatment Variability

The unbiased weighted variance s2
YB

(Equation S2-18) is an improved estimate of the total vari-
ance, relative to s2

tot,B . Thus we can rewrite Equation S2-29 according to

s2
YB

= s2
pop,B + s2

reg,B + s2
tre (S2-32)

whilst the interpretation of s2
YA

remains

s2
YA

= s2
pop,A + s2

reg,A (S2-33)

As both s2
pop,B and s2

pop,A are sample statistics describing the variability of the same population,
we can make the assumption that s2

pop,B = s2
pop,A. By subtracting Equation S2-33 from S2-32,

we can estimate s2
tre as
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s2
tre = s2

YB
− s2

YA
−
(
s2

reg,B − s2
reg,A

)
(S2-34)

which is an estimate of the variability induced by the treatment. Thus, we would report our
best estimate of the average treatment effect along with its 95% ME and the variability in the
treatment effect as

Z ± MEZ,95 (2stre)

S2-4 Paired Data

For paired data, rather than taking the difference between the weighted means from the two
samples, we investigate the weighted mean of the differences Zp for each pair, p, as given by

Zp = Yp,2 − Yp,1 (S2-35)

where Yp,2 is the value of the treated sample from pair p, and Yp,1 is the value of the vehicle
treated sample from the paired (contralateral) control. Z is then the weighted mean of Zp for Ψ

pairs.

S2-4.1 Calculating the Weights

The difference between treated and control (vehicle-treated) samples of a given pair can be
written in terms of stochastic random variables according to

Yp,2 + Yreg,p,2 = Yp,1 + Yreg,p,1 + µZ + Ztre,p + Zcon,p (S2-36)

where Yp,1 is the facility from the control eye from pair p, and Yp,2 is from the corresponding
treated eye. Yreg,p,1 and Yreg,p,2 are errors arising from the regression analysis. µZ is the popula-
tion average of the paired differences arising due to the treatment. Ztre,p is the deviation in the
treatment effect from µZ for pair p. Zcon,p is the intra-individual variability that accounts for the
difference in untreated baseline values between Yp,1 and Yp,2. All random variables except Yp,1
and Yp,2 have a zero mean, and µZ is an exact value. Combining Equations S2-35 and S2-36,
yields

Zp = Yp,2 − Yp,1 = µZ + Ztre,p + Zcon,p + Yreg,p,1 − Yreg,p,2 (S2-37)

for which the variances are

s2
Zp

= s2
tre + s2

con + s2
reg,p,1 + s2

reg,p,2 (S2-38)
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Both s2
tre, the variance in the treatment effect, and s2

con, the variance between contralateral eyes,
must be estimated by averaging over the entire sample, whereas the s2

reg,p terms are known
uncertainties from the regression analysis. Averaging Equation S2-38 across the sample,

s2
tot,Z = s2

tre + s2
con + 2s2

reg (S2-39)

Substituting s2
tre + s2

con into Equation S2-38 yields

s2
Zp

= s2
tot,Z + s2

reg,p,1 + s2
reg,p,2 − 2s2

reg (S2-40)

Note that the terms s2
con and s2

tre have cancelled. The implication of this is that the value of s2
tot,Z

encompasses the uncertainty in both the treatment effect between individuals and the intra-
individual variability in untreated facility. Hence, if s2

tre or s2
con increased, we would observe an

increase in s2
tot,Z . The weights can be defined according to

wp =
1

s2
Zp

(S2-41)

S2-4.2 Sample Statistics

The weighted mean according to Equation S2-3 is

Z =
Ψ∑
i=1

w′pZp (S2-42)

for which the variance is given by Equation S2-4

s2
Z

=

Ψ∑
i=1

w′2p s
2
Zp

(S2-43)

The unbiased weighted variance is given by Equation S2-5

s2
Z =

Ψ∑
i=1

w′p
(
Zp − Z

)2
1 −

Ψ∑
i=1

w′2p

(S2-44)

Figure S2-2 shows an overview of this analysis.
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Figure S2-2: Schematic of the steps in the analysis method for paired data. Blue indicates control data, red
indicates ‘experimental’ data and green indicates combined data on the differences between experimental and

control cases.

S2-4.3 Degrees of Freedom

Equations S2-40 and S2-43 yield

s2
Z

=

Ψ∑
p=1

w′2p

(
s2

tot,Z + s2
reg,p,1 + s2

reg,p,2 − 2s2
reg

)

= s2
tot,Z

Ψ∑
p=1

w′2p +

Ψ∑
p=1

w′2p s
2
reg,p,1 +

Ψ∑
p=1

w′2p s
2
reg,p,2 − 2s2

reg

Ψ∑
p=1

w′2p

(S2-45)

Using the W-S equation (Equation S2-7) gives

νZ ≈

(
s2
Z

)2

(
(s2tot,Z)

2

Ψ−1 +
2(s2reg)

2

Ψ

)(
Ψ∑
p=1

w′2p

)2

+
Ψ∑
p=1

(
w′2

p s
2
reg,p,1

)2

mp,1−r +
Ψ∑
p=1

(
w′2

p s
2
reg,p,2

)2

mp,2−r

(S2-46)
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S2-4.4 Treatment Effect

In standard unweighted analysis, the variance due to the treatment is typically approximated
as the sample variance s2

tot,Z . However, as shown by Equation S2-39, s2
tot,Z includes contribu-

tions from measurement uncertainty and intra-individual variability, and therefore s2
tot,Z would

tend to overestimate the true treatment variability. Given that the value of s2
Z is an improved

estimate of s2
tot,Z , we can rewrite Equation S2-39 as

s2
tre = s2

Z − s2
con − 2s2

reg (S2-47)

Where s2
Z and s2

reg are known. In order to estimate the intra-individual variability, s2
con, and

thus estimate s2
tre, independent experiments must be carried out to measure the difference in Y

values between untreated pairs, as described in the main text. As there is no treatment effect in
this case, µZ = 0 and s2

tre = 0, and Equation S2-38 reduces to

s2
Zp

= s2
con + s2

reg,p,2 + s2
reg,p,1 (S2-48)

Averaging Equation S2-48 over all pairs yields

s2
dif = s2

con + 2s2
reg (S2-49)

where s2
dif is the variance in the difference between Ψcon untreated pairs, as given by

s2
dif =

1

Ψcon

Ψcon∑
p=1

Z2
p (S2-50)

where the sample mean is defined as zero to be consistent with µZ = 0. As Z for the untreated
pairs is unlikely to be exactly zero, Equation S2-50 will yield a value of s2

dif that is slightly larger
than s2

tot,Z for the control pair data set. We can therefore estimate s2
con according to

s2
con = s2

dif − 2s2
reg (S2-51)

The treatment variance s2
tre is then given by Equation S2-47, and we report the mean weighted

difference between pairs along with its 95% CI and spread of the data as

Z ± MEZ,95 (2stre)
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S2-5 Weighted t-test

The preceding analysis for either paired or unpaired data yields a value for Z, s2
Z

, and νZ . The
variance of Z can be described as a χ2 distribution with νZ degrees of freedom, and thus the
t-statistic given by

t =
Z

sZ

from which a p-value can be calculated based on a Student’s t-distribution with νZ degrees of
freedom. This ‘weighted t-test’ provides an alternative to the standard t-test, by accounting for
variable uncertainties in the measurements.

S2-6 Describing measures of spread

In this section, we discuss the reasons for the form proposed in the main paper for reporting
statistical results. As described in the present study, for some variables, such as the outflow
facility of mouse eyes, the assumption of normality may not be appropriate. However, it was
found that a lognormal distribution is able to reasonably approximate the data, such that we
can apply statistical methods dependent on the normal distribution to the log transform of
the facility. In the interest of simplicity, we therefore discuss the implications of measures of
spread for normally distributed data. Although the calculations used in the present study
incorporate weighting in order to better account for uncertainties in the measurements, the
following discussion also applies to non-weighted statistical descriptors.

S2-6.1 Selecting measures of spread for normally distributed variables

The standard deviation (SD) and the standard error on the mean (SEM) are the two most com-
monly used measures of spread for the reporting of outflow facility and other parameters in
ocular biomechanics. These two parameters have specific and different meanings that should
be considered. The SEM provides an indication of the confidence on the estimate of the mean value,
whilst the SD describes the spread of the data about the mean.
Consider a study of a drug that may alter outflow facility. In this case, the SEM would inform
how certain we can be about the average effect of the drug. The SEM is also used in hypothesis
testing using the t-test, which estimates the probability that the average effect of the drug is in
fact negligible (the null hypothesis). The SD would indicate the variability in the drug effect,
which could be important if, for example, the drug was more or less effective in some patients.
In practice, both parameters are useful, and in the interest of the most complete description of
the data, we provide both the confidence on the mean and the spread within the population, in
the form of functions of the SEM and SD.
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S2-6.2 Defining measures of spread for normally distributed variables

Standard Deviation.
It should be noted that we only have s, the standard deviation of the sample, rather than σ, the
true standard deviation of the population. s is therefore an estimate of σ.
The mean ±s (a single SD) describes the interval containing ≈ 68% of the individual data points
from a given sample. Rather than 68%, a range of 95% provides a more intuitive description
of the spread of the data in the population. For this we use ‘two-sigma’, which in the case
of the sample standard deviation is approximated by 2s. The broad interpretation of mean ±
two-sigma is thus that only 1 in 20 data points in the population sample would be expected to
lie outside this range (rather than ≈ 1 in 3 for a single SD).
Standard Error on the Mean and Confidence Interval.
The mean ± SEM (a single SEM) broadly describes the range within which the mean lies with
a probability of approximately 68%. Similarly to the SD, it is better to report a 95% probability
as this provide a more intuitive range. Furthermore, we can calculate a CI, which has a more
specific interpretation than two-sigma or equivalently, 2 SEM.
The strict definition of the 95% confidence interval is that if the experiment were repeated many
times, sampling from the same population, the mean would lie within this range in 95% of the
cases. More loosely, it can be interpreted as the range within which we can state that the mean
probably lies.
If σ were known, then it would be possible to define the 95% confidence interval as 1.96 SEM,
with the 1.96 (≈ 2) arising from the characteristics of the normal distribution. However, as only
s is known, it is necessary to use the t-distribution to account for the reduced confidence on
the estimate of the SD, arising from a small sample size. The t-distribution is similar to the
normal distribution, but is more spread out, meaning that calculated probabilities are larger.
The corollary is that we can calculate a value k, such that the mean ± kSEM describes the 95%
confidence interval.
The value of k depends on the number of degrees of freedom (DOF) in the data, ν, defined as
the number of data points minus the number of free parameters in the model. For unweighted
paired data, the calculation of the mean has ν = Ψ − 1 DOF (where Ψ is the number of pairs).
For unpaired samples with similar sample variances, ν = NA +NB − 2 (where NA and NB are
number of data points in each population sample). For the weighted analysis in the present
paper, the DOF is estimated as described above in this Supplemental Information. Table 1 lists
the value of k for various DOF.

Table 1: Values of k for the 95% confidence interval, calculated from the inverse cumulative t-distribution

ν 3 4 5 6 7 8 9 10 20 50 100
k 3.18 2.78 2.57 2.45 2.36 2.31 2.26 2.23 2.09 2.01 1.98

14



Supporting Information 2: Statistical Analysis

As can be seen from Table 1, as ν increases, k decreases and thus the confidence interval be-
comes smaller. By reporting the mean, the confidence interval on the mean and two-sigma, the
reader is provided with a more complete and intuitive description of the data, as compared to
providing the mean with SD or SEM alone.
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