S1 Appendix

Position controller in TE works as follows: When a subject's finger interacts with a curve at a point p_{t}, two independent position controllers, one in x direction and the other in y direction, are used, with proportional gains denoted by $k_{p x}$ and $k_{p y}$. The controller first calculates the traveled distance along x - and y -coordinates relative to the first interaction point p_{t}, and these distances are introduced to the controller as errors denoted by δx and δy. Then, the horizontal position of the curve path is regulated based on the error δx penalized by the controller gain $k_{p x}$ whereas the regulation along vertical direction is performed only on the particular curve that the subject is interacting, and is calculated based on the error δy penalized by the controller gain $k_{p y}$. When the interaction with the touch screen is removed at any instance, then the position controllers are reset to zero, and curve flow speed resumes its baseline value.

The nearest point algorithm is employed to enhance the tracking speed of the subject, see S1 Table for definitions:The curve path is divided into regions R_{i} via vertical boundaries $b_{R_{i}}$ not seen by the subject (dashed in S1 Fig.). Each region R_{i} contains a curve C_{i} which was created in Matlab as an interpolating cubic spline that consists of points $p_{k}, k=1 . .101$. Each curve C_{i} is offset by a horizontal distance m. The slope $s_{p_{k}}$ at each point p_{k} of the curves is calculated using p_{k+1} in first order Taylor expansion. According to $s_{p_{k}}$ value, p_{k} is determined to be either on a vertical segment (if $\left|s_{p_{k}}\right|>0.34$), or on a horizontal segment of the curve. This range for slopes was determined in pilot studies based on what the subjects in general perceived to be horizontal or vertical finger motions.

The start and end point of each vertical part is considered as a corner c of the curve. Region boundaries $b_{R_{i_{l}}}$ and $b_{R_{i_{r}}}$ for each curve C_{i} are determined such that they are located on the left and right of the curve by an offset of $m / 2$. For each touched point p_{t} by the subject, the curve region R_{i} containing p_{t} is found in order to determine the active curve C_{i} that is the closest to the touched point p_{t}. Then, using the nearest point search algorithm in Matlab, the closest point p_{n} to the touched point p_{t} is calculated. This way the error in position tracking can be calculated.

Following action is taken if p_{n} is on a horizontal part of the curve: The gain $k_{p x}$ of the position controller is increased such that the curve flows faster underneath subject's finger. As p_{n} approaches the corner c of the curve, $k_{p x}$ is reduced in real-time to its previous value in order to prevent subject's finger to overshoot the corner of the curve and undesirably deviate from the curve. When p_{n} is on the vertical part of the curve, the position controller gain $k_{p y}$ is increased at each time step up to a predetermined value and kept at that value until the finger reaches a corner on the active curve.

