Parameters Values from the Curve Fit. | c_1 | $K_{d,f}$ | Association of P53 and MDM_2 | $9.20 \cdot 10^6$ | $M^{-1}s^{-1}$ | |----------|---------------|---|----------------------|----------------| | c_2 | $K_{d,r}$ | Dissociation of P53 and MDM_2 | 2.00 | s^{-1} | | c_3 | ka_f | Association of LH ₂ to NC Complex | $1.84 \cdot 10^8$ | $M^{-1}s^{-1}$ | | c_4 | ka_r | Dissociation of LH ₂ from NC Complex | $3.00 \cdot 10^3$ | s^{-1} | | c_5 | kl_f | Association of ATP to NC Complex | $3.00 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_6 | kl_r | Dissociation of ATP from NC Complex | $4.80 \cdot 10^3$ | s^{-1} | | c_7 | kl_{f2} | Association of LH ₂ to NFLuc | $1.84 \cdot 10^8$ | $M^{-1}s^{-1}$ | | c_8 | kl_{r2} | Dissociation of LH ₂ from NFLuc | $5.05 \cdot 10^3$ | s^{-1} | | c_9 | ka_{f2} | Association of ATP to NFLuc | $3.00 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_{10} | ka_{r2} | Dissociation of ATP from NFLuc | $2.05 \cdot 10^4$ | s^{-1} | | c_{11} | k_{Af} | Adenylation rate, forward, NC complex | $5.01 \cdot 10^2$ | s^{-1} | | c_{12} | k_{Ar} | Adenylation rate, reverse, NC complex | $1.08 \cdot 10^{-2}$ | s^{-1} | | c_{13} | k_{Af2} | Adenylation rate, forward, NFLuc | $5.00 \cdot 10^{-2}$ | s^{-1} | | c_{14} | k_{Ar2} | Adenylation rate, reverse, NFLuc | $1.10 \cdot 10^{-2}$ | s^{-1} | | c_{15} | kI_f | Association of Intermediate, NC complex | $7.77 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_{16} | kI_r | Dissociation of Intermediate, NC complex | 3.47 | s^{-1} | | c_{17} | kI_{f2} | Association of Intermediate, NFLuc | $7.77 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_{18} | kI_{r2} | Dissociation of Intermediate, NFLuc | 3.47 | s^{-1} | | c_{19} | k_{cat} | Oxidation Rate, NC complex | $2.1 \cdot 10^{-1}$ | s^{-1} | | c_{20} | k_{cat2} | Oxidation Rate, NFLuc | $4.00 \cdot 10^{-7}$ | s^{-1} | | c_{21} | ki_f | Association of Oxyluciferin to NC Complex | $8.30 \cdot 10^6$ | $M^{-1}s^{-1}$ | | c_{22} | ki_r | Dissociation of Oxyluciferin from NC Complex | $6.13 \cdot 10^{-1}$ | s^{-1} | | c_{23} | ki_f^2 | Association of L-AMP to NC Complex | $5.00 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_{24} | ki_r^2 | Dissociation of L-AMP from NC Complex | $2.30 \cdot 10^{-5}$ | s^{-1} | | c_{25} | ki_{f2} | Association of Oxyluciferin to NFLuc | $8.30 \cdot 10^6$ | $M^{-1}s^{-1}$ | | c_{26} | ki_{r2} | Dissociation of Oxyluciferin from NFLuc | $6.13 \cdot 10^{-1}$ | s^{-1} | | c_{27} | ki_{f2}^2 | Association of L-AMP to NFLuc | $5.00 \cdot 10^7$ | $M^{-1}s^{-1}$ | | c_{28} | ki_{r2}^{2} | Dissociation of L-AMP from NFLuc | $2.30 \cdot 10^{-5}$ | s^{-1} | | c_{29} | | Dark Reaction Frequency | $2.87 \cdot 10^{-1}$ | | | c_{30} | | Heat Degradation | $1.00 \cdot 10^{-3}$ | s^{-1} |