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Abstract
Objectives: The Bbacterial colonization immediately after installation, which is  to induced by the formation of biofilm around implants, is the primary cause of post-operation infection. Initial surface modification is usually required for to incorporateing antibacterial agents on titanium surfaces to inhibit biofilm formation.; Hhowever, simple and effective priming methods are still lacking in for the development ofing an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces with using phase-transited lysozyme (PTL), based on which multilayer coatings can incorporate d with silver nanoparticles (AgNP) using chitosan (CS) and hyaluronic acid (HA) via a layer-by-layer (LbL) self-assembly technique. 	Comment by editor: 
Abbreviations and acronyms are often defined the first time they are used within the abstract and again in the main text and then used throughout the remainder of the manuscript. Please consider adhering to this convention.
Methods: In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethyl)phosphine (TCEP) to obtain PTL-functionalized Ti substrates. The following subsequent alternatingely coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL was were carried out via LbL self-assembly to construct the multilayer coatings on Ti substrates.
Results: The results of SEM and XPS indicated that the necklace-like PTL and self-assembledy multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria, and sustaininedg release of Ag during over 14 days can resist prevent bacterial invasion until mucosal healing. Although the AgNP-containing structure showed some cytotoxicity, it the toxicity can be reduced by controlling the Ag release rate and concentration.
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]Conclusions: The PTL priming method provides a promising strategy to for fabricating e long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant- associated infections and guarantees normal early-stage wound healing in the early stage.
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1. Introduction:
Titanium (Ti) and its alloys are currently considered as to be the most widely used biomaterials for dental implants because of their eminent superior biocompatibility and excellent physicochemical properties [1]. However, implant-associated infection remains to be one of the most perilous complications of these procedures, leading to the failure of implant surgery along with psychological trauma and economic burden [2]. Recent studies have estimated that 65% of nosocomial infections were are associated with the biofilm, which hasd an enormous impact on medical medicine therapiesy [3]. Peri-implantitis and peri-implant mucositis are generally difficult to manage owing to the a long term duration of antibiotic therapy and repeated surgical procedures [4]. The formation of biofilm on the surfaces of implants followed by bacterial adhesion is the primary reason for thecause of infections of the mucosa and bone adjacent to the implant [5]. The process of biofilm formation concerns involves unicellular organisms coming together to form a constant contiguous community encompassed in an exopolysaccharide matrix [6]. Thus, the biofilm makes the bacteria more invasive to and competitivete against the host defenses and brings presents difficulties for antibacterial treatments [7]. Therefore, establishing long-term antibacterial coatings on the surfaces of titanium implants to inhibit the biofilm formation is of prime importance in the prevention of implant-associated infections.

NowadaysCurrently, incorporating the incorporation of antibacterial drugs into the coatings ofn dental implant surfaces has attracteds increasing focus attention which and is considered as an effective strategy to prevent bacterial adhesion and subsequent biofilm formation. Before loading antibacterial agents, pretreatments ofit is essential to pretreat the implant surfaces are essential to carry out using physical and chemical methods. Physical surface modification involves [8] physical vapor deposition, ion beam implantation and lithographic techniques;  chemical methods are considered asconsidered the most popular and efficient ways to modify implant surfaces and includeing acid etching, peroxidation, alkali treatment, anodic oxidation, incorporation of functional molecules via covalent crosslinking, chemical vapor deposition and hydrothermal modification [8]. However, these methods are inconvenient for application due to the involvement of complicated priming procedures, hazardous chemical substances and large-scale manufacturinge equipment. Thus, it is desirable to explore a simple priming method for incorporating applying antibacterial coatings onto the titanium surfaces is needed.

A novel phase-transited lysozyme (PTL) has recently been applied in surface functionalization lately. Compared with other traditional surface pretreatmenting techniques, priming the pristine titanium surfaces with PTL is a simple, rapid, low-cost and green process of for surface functionalization. The phase-transited lysozyme could can be stably immobilized on a variety of substrates, regardless of the substrate type, by the formation of an amyloid-like microfiber network contributed to thebased on the intensive  β-sheets transition existed found in lysozyme microfibers, which presentenables aed robust adhesion on to titanium surfaces [9]. This method is a one-step modification achieved by soaking the titanium surface in lysozyme transition buffer. In fact, the priming with PTL would affordplaces an initial layer of positive charges on the Ti surfaces for the fabrication of layer-by-layer self-assembly, on which the simple but robust immobilization of a series of functional building blocks can be accomplished through straightforward electrostatic interaction [9]. Consequently, it is possible to incorporate antibacterial agents into coatings on implants simply based on PTL pretreatment combined with this layer-by-layer self-assembly technique.	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

Recently, the efficacy of the antimicrobial agents and the correspondingir antibiotic resistance to these agents are still challenges to maintaining the long-term anti-infection treatments. Currently, silver nanoparticles, as strong antimicrobial agents, have attracted growing interest. In contrast with conventional antibiotics, silver nanoparticles have their own advantages such as strong antibacterial efficacy without the producgeneration ofing drug-resistant bacterial strains, a broad antibacterial spectrum including that includes antibiotic-resistant bacteria and non-cytotoxicity in a moderate doses [10,11]. MoreoverFurthermore, to inhibit biofilm formation, it is necessary to fabricate a composite structure must be fabricated on the Ti surfaces with for sustained-release of Ag and long-term antibacterial activity for inhibiting biofilm formation. Layer-by-layer (LbL) self-assembly is a well-established versatile approach contributed tothat the fabricatesion of a multilayer structure on Ti surfaces by depositing alternating layers of oppositely charged polyelectrolytes [12]. The mMultilayers composed of positively charged cChitosan (CS) and negatively charged hyaluronic acid (HA) via LbL self-assembly have are been commonly acknowledged used for drug delivery and release control due to their desirable biocompatibility [13,14]. Besides,Moreover, Chitosanchitosan also serves as a kind  of dispersants for silver nanoparticles [15]. Thus, in this study, we applied the layer-by-layer (LbL) self-assembly technique to fabricate a silver nanoparticles-containing multilayer coating on the PTL-primed Ti surfaces.

The aim of our study was to establish a novel initial layer on Ti surfaces with phase-transited lysozyme (PTL), based on which multilayer coatings incorporated with silver nanoparticles incorporated were would be fabricated using Chitosanchitosan (CS) and hyaluronic acid (HA) via the LbL self-assembly technique. We hypothesized that the silver nanoparticles-containing multilayer coating on the PTL-primed Ti surfaces would boast exhibit a relatively long-term antibacterial efficacy, to prevent biofilm formation and show favorable biocompatibility.

2. Materials and methods
2.1. Materials
Pure titanium foils of 1-mm thickness and 12-mm diameter were purchased from Baoji Noble Metal Co., Ltd. (Shanxi,China). Chitosan ([2-anino-2-deoxy-(1–4)-β-D-glucopyranosel]), with a molecular mass of 400,000 Da and deacetylation degree of 100%, was purchased from Fluka. Sodium hyaluronate (11g g) and silver nitrate (255g g, AR, ≥99.8%) were purchased from SangonCo., Ltd. (Shanghai,China). Staphylococcus aureus (S. aureus, ATCC 25923) was obtained from China General Microbiological Culture Collection Centre. Lysozyme (22m mg/mL) which was dissolved in a HEPES buffer (pH 7.4) and tris(2-carboxyethyl)phosphine (TCEP) (200m mM) were obtained from Shaanxi Normal University.	Comment by editor: 
Please include both the manufacturer's name and location (including city, state, and country) for specialized equipment, software, and reagents.

2.2. Specimen preparation
The pure Ti foils were polished by SiC sandpaper of No.100, 240, 400, 600, 800, and 1000 grits in turn. Then Then, the foils were ultrasonically washed with acetone, ethanol and deionized water sequentially. At lLast, the Ti foils were sterilized in an autoclave at 120 °C for 1 h for the in vitro experiments.

For To functionalizeing the surface of the Ti discs, the samples were first dipped into a mixture of lysozyme and TCEP (1:1 in volume) and then incubated in a moist environment for 2 hours. These Ti discs were then washed with ultrapure water to remove residual impurities. 

2.3. Synthesis of silver nanoparticles
A chitosan solution was first prepared by dissolving 0.1% (w/v) chitosan in a 1% (v/v) acetic acid solution under stirring (1300 r/min). Next, the silver nitrate powder was dissolved in the chitosan solution under stirring (1300 r/min) to obtain four concentrations (10, 20, 50, and 100 mM) of an AgNO3 solutions. After thatSubsequently, the ascorbic acid (0.011M M) was added into the AgNO3 solution drop by drop with a pipette under constant stirring. All the above experiments were carried out at room temperature.

2.4. Fabrication of multilayer coatings on the surface of PTL-primed Ti substrates
After the precursor layer was established, the substrate was sequentially treated with HA (1 mg/mL in 0.22M M sodium acetate buffer), washed with sodium acetate buffer, and then covered by CS/Ag nanoparticles. HA and CS/Ag were each defined as one monolayer, and HA-CS/Ag was defined as one bilayer. These samples discs were denoted by Ti-PTL-HA-CS/Ag discs which areand were one typical cycle of multilayer construction. The immersionng cycle was repeated three times until the desired multilayer coating was obtained (HA-CS/Ag-HA-CS/Ag-HA-CS/Ag). Finally, these samples were stored in a constant humidity chamber at 50±5% relative humidity before follow-up experiments.	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

2.5. Release of silver incorporated into the composite in vitro
The amounts of silver released from the composite samples were was monitored in the phosphate buffered saline (PBS). The samples were immersed in 10 ml of PBS for 1 day in the dark, taken out, and then immersed again in 10 ml of fresh PBS. At different sampling intervals (1, 4, 7and 14 days), the supernatant was sampled for analysis. The PBS supernatant containing released Ag was analyzed by inductively-vely coupled plasma atomic emission spectrometry (ICP-AES, Varian 725-ES, US).

2.6. Surface characterization
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]X-ray photoelectron spectroscopy (XPS, AXIS His, Kratos Analytical Ltd., UK) was used to identify the chemical constituents of pristine and variously modified Ti surfaces.
The contact angles of deionized water on the pristine and modified Ti surfaces were measured by the sessile drop method in a goniometer equipped with the drop-shape analysis system (JC2000D1, Micaren, China) at room temperature. Each Ti disc was measured three times to calculate the mean values of the contact angles. 
The surface morphology of the pristine and decorated Ti was characterized by field-emission scanning electron microscopy (FE-SEM, JSM-5600LV, JEOL, Japan) with a beam voltage at of 15kV. All tThe samples were sputter-coated by with gold before SEM observation apart fromexcept for the Ti discs modified by with CS/Ag nanoparticles. The chemical compositionnent of the surface of the CS/AgNP discs was identified by energy dispersive X-ray detector (EDX, Japan).	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.
The size and morphology of the Ag nanoparticles was observed by transmission electron microscopy (TEM, Philips CM20).

2.7. Antibacterial assay
[bookmark: OLE_LINK7][bookmark: OLE_LINK8][bookmark: OLE_LINK11][bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK14][bookmark: OLE_LINK15]Staphylococcus aureus (S. aureus, ATCC 25923) was cultivated in a beef extract-peptone (BEP) medium. After an overnight culture at 37°C℃, the bacterial suspension was adjusted to a concentration of 105 CFU/ml for the antibacterial assay. Ti discs were put into sterilized 24-well plates filled with a bacterial suspension (1 ml per well) and cultured at 37°C℃ in an incubator containing 5% CO2. At different intervals (1, 3, 5, 7 and 14 days), the bacterial suspension was sampled, and the viable planktonic bacteria were counted using serial dilutions and the spread plate method. Next, the Ti discs were taken out, gently rinsed with PBS to eliminate non-attached bacteria and then underwent ultrasonic treatment at 400W W for 5 min in a new 24-well plate filled with 1 ml of BEP per well, followed by sampling the bacterial suspension to count the viable bacteria adhered on to the Ti discs. During the incubation period, the former medium was replaced by a new culture medium inoculated with bacteria every day.
[bookmark: OLE_LINK19][bookmark: OLE_LINK20]The antibacterial activity rates of samples against planktonic bacteria and adhered bacteria were determined by the following formula: R= (B-A)/B×100%. Meanwhile, A is the number of viable bacteria in the culture medium with a modified/pristine Ti disc or on a modified Ti disc.; B is the number of viable bacteria in the culture medium without a Ti disc or on a pristine Ti disc.
The fFluorescence staining was used to characterize the viability of adherent bacteria on the samples. S. aureus was seeded on the surfaces of the Ti discs in a 24-well plate, as with the incubation, for period of 7 days, as previously described. The bacterial medium was refreshed daily, and after 7 days, the samples were rinsed with PBS to remove non-adherent bacteria. Then Then, the bacterial cells were stained by with acridine orange and ethidium bromide for 15 min in the dark before observationed by confocal laser scanning microscopy (CLSM) (TCS SP5, Leica, Germany).

2.8. Cell culture
MC3T3-E1 murine preosteoblasts (Type Culture Collection of the Chinese Academy of Sciences, Shanghai, China) were used for cytotoxicity tests. The cCells were cultured in DMEM medium (Gibco, Carlsbad, CA) containing 10% fetal bovine serum (FBS) (Gibco) and 3% penicillin/streptomycin (Gibco) at 37°C ℃ in a humidified atmosphere of 5% CO2. 

2.9. Lactate dehydrogenase activity assay
The cytotoxicity of AgNP to MC3T3 cells can be assessed by the activity of lactate dehydrogenase (LDH, Sigma-Aldrich) released by the cells in the culture media released by the cells. After incubation for 1 day and 4 days, the culture media were sampled and centrifuged, and then, the supernatant was used for the LDH activity assay. The LDH activity was determined by the absorbance value of optical density (OD) at a 450- nm wavelength according to the manufacturer’s instructions.	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

2.10. Alkaline phosphatase activity
One ml milliliter of the MC3T3 cells suspension was seeded on each specimen in a 24-well plate at a density of 1×105 cells per well. The cells were cultured for 7 days, then washed with PBS and lysed in 0.1 vol% Triton X-100 through the standard freeze-thaw cycles. The alkaline phosphatase (ALP) activity in the cell suspension was determined by the absorbance value at 520 nm. The ALP activity was normalized to the total protein content, which was analyzed by the MicroBCA protein assay kit.

2.11. Cell viability assay
To evaluate the in vitro cell viability of the MC3T3 cells on each sample, the a cell counting kit-8 assay (CCK-8, Dojindo, Japan) was performed according to the manufacturer’s instruction. In brief, after incubation for 3 days, the cells were collected and centrifuged before they were replaced with 100 μl fresh medium per well of in a 96-well plate with 100 μl fresh medium per well. Next, a 25-μl CCK-8 solution was added to each well of the 96-well plate and kept at 37°C℃ and, 5% CO2. After two hours, the production of formazan by viable cells was assessed through the absorbance value of supernatant optical density (OD), which was measured with a microplate reader (model 680, Bio-Rad, CA) at a 450- nm wavelength.

2.12. Statistical analysis
Each test The samples werewas repeated three times, in each test and the results were expressed as mean as the means ± standard deviations. The data were assessed statistically using one-way ANOVA and a Student-Newman-Keuls (SNK) post hoc test. P < 0.05 was regarded to beconsidered significant, and p < 0.01 was considered highly significant.

3. Results
3.1. Surface characterization
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]The surface chemical constituents of the surface of the pristine and modified Ti discs in various stages of LBL self-assembly were analyzed by XPS. The XPS spectra of surface elemental compositions aAfter calibrating peak positions, using C 1s as an internal reference at 284.8 eV, the XPS spectra of surface elemental compositions are shown in Fig. 1 and Table 1. The wide -scan spectrum of the pristine Ti (Fig. 1a) shows that the chief components include C 1s, Ti 2p3 (458.5 eV), O 1s (530 eV) and N 1s (399 eV). The distinctive peaks of P 2p (132 eV) and S 2p (164 eV) originated from TCEP, and the disappearance of the Ti 2p3 peak indicates successful anchoring of PTL on to the Ti substrate (Fig. 1b), which was is also supported by the quantitative analysis of the XPS results (Table 1). As shown in Fig. 1c and Table 1, the appearance of Na content originated from hyaluronate, which indicates that hyaluronic acid (HA) was immobilized on the PTL-primed Ti surface. Upon the addition of CS/Ag nanoparticles (AgNP) on to the layer of HA, the distinguished distinctive Ag content appears due to the Ag-containing in chitosan. Fig.2Fig. 2 shows the binding energies of the Ag 3d peak at 368.25 eV and 374.25 eV, which  that can be assigned to 3d5/2 and 3d3/2 of metallic Ag0 [16], indicating that Ag mainly primarily exists in the Ag0 state in the composite of CS/AgNP .	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

The surface hydrophilicity of pristine and modified Ti discs was also investigated. As depicted in Fig. 3, the water contact angle on the Ti surface coated with the LbL self-assembledy multilayer containing CS/AgNP is sharply decreased from 76.9°±2° to 49.3°±3°. The surface of the pristine Ti discs was more hydrophobic, while the surface of the modified Ti discs was hydrophilic.

SEM results (Fig. 4a-d) show the surface morphology of a pristine Ti disc, PTL primed Ti disc, and HA- coated PTL-Ti and multilayer of HA and CS/AgNP coated Ti disc. Meanwhile, The SEM image (Fig. 4b) reveals that the PTL was has necklace-like fibers with a diameter of 0.5-1 μm, which is in good agreement with a previous report [9]. The EDX pattern (Fig. 4e) also verifies that the chemical component composition of the self-assembledy multilayer loaded onto the Ti surface is silver. The morphology of the composite CS/AgNP (100m mM) was is exhibited in the TEM results (Fig. 4f). The shape of the silver nanoparticles was a comparatively relatively uniform sphere averaging , about 3approximately 30 nm in average size.

3.2. Release of Ag from Ag nanoparticles-loaded Ti discs
As shown in Fig. 5, the Ag released from the samples in PBS exhibits an initial burst effect at on the first day. The amounts of released Ag released at the different intervals (1, 4, 7, and  14 days) follows the order of CS/Ag100 > CS/Ag50 > CS/Ag20 > CS/Ag10. Initially, there were relatively large amounts of Ag were released into the PBS, with CS/Ag100 leaching the most, and the amount of released Ag decreased gradually with immersion time and tended to be stable after 7 days. After two weeks, the average concentration of released Ag was 0.70±0.14 μg/ml.

3.3. Inhibition of biofilm formation
The antimicrobial ability of CS/Ag- decorated Ti discs was investigated by fluorescence staining. Fig. 6 shows the CLSM images of adherent bacteria on the pristine and modified Ti discs after 7 days. The Ti discs were incubated in the culture media with repeated bacterial invasion every day. The fluorescence microscopy images of CLSM showed more dead S. aureus cells on the surfaces of the CS/Ag samples with red color. In addition, the viable bacteria with green color were observed on the surfaces of pristine Ti and PTL-primed Ti. In significant contrast, nearly no viable bacterial cells could be found on the CS/Ag- modified Ti surfaces. 

The antibacterial activity rates of samples against planktonic bacteria in the medium (Rp) and adherent bacteria on the surfaces of samples (Ra) for over 14 days were respectivelye  evaluated, as shown in Figs. 7 and 8, respectively. The CS/Ag samples showed significantly higher Rp values of about 1approximately 100%, significantly higher  than pristine Ti during the first 4 days. At the 5th day, the Rp values of the CS/Ag samples decreased gradually, and those of the CS/Ag10 samples diminished more quicklyrapidly. After 7 days, the Rp values of the CS/Ag samples, especially particularly the CS/Ag100 samples, were statistically significantly higher than those of pristine Ti samples. The modified Ti surfaces incorporated with silver incorporated were effective in preventing bacterial colonization on the Ti discs for 14 days as illustrated by Fig. 8. The mMost of the CS/Ag samples showed Ra values of 100% without a significant decrease during over 7 days. However, the CS/Ag10 samples revealed exhibited a relatively sharp decrease after 14 days, reaching a value of about 6approximately 65%. The other three CS/Ag groups still showed Ra values of about 9approximately 90% after 14 days.

3.4. Cytotoxicity
The cytotoxicity results indicated by the LDH activity in the supernatants after 1 and 4 days of incubation are compared in Fig. 9. After the first day, neither the Ti-PTL nor the CS/Ag samples showed an obvious enhancement in the LDH activity. After culturing for 4 days, the CS/Ag20 and CS/Ag50 samples exhibited slightly higher LDH activity than pristine Ti, Ti-PTL and CS/Ag10, but the difference was statistically insignificant. However, higher LDH activity was observed from in the CS/Ag100 sample. The CS/Ag samples exhibited cytotoxicity with the increase of in the amount of incorporated Ag.

3.5. Cell viability
The cell viability of each sample was evaluated by a Cell Counting Kit 8 (CCK-8). As shown at in Fig. 10, the CS/Ag20, CS/Ag50, and CS/Ag100 samples show statistical differencesignificant differences without the CS/Ag10 group. Moreover, CS/Ag100 samples exhibited significantly lower cell viability than the other sampless.

3.6. Alkaline phosphatase activity
The ALP activity assay after 7 days of culturing is shown in Fig. 11. Compared with the pristine Ti, the modified Ti discs incorporated with Ag incorporated had decreased ALP activity, especially particularly the CS/Ag100 samples, which exhibited dramatically lower ALP activity (20-35%). 

4. Discussion
In this study, we tried to develop a distinctiveguished and simple pretreatment method: using phase-transited lysozyme (PTL) to modify the Ti surfaces. The initial layer of PTL on Ti surfaces wcould provide a base for antibacterial multilayer coatings established via a layer-by-layer self-assembly technique. Ideally, a broad spectrum of building blocks, including small and macro-molecules, biomolecules, and colloids, could be easily immobilized onto a PTL-primed substrate, regardless of substrate type [9]. XPS results (Fig. 1 b) demonstrated that the PTL was successfully immobilized onto the surface of Ti discs. It is has been suggested that PTL is an extremely stable material, and the adhesion strength of PTL is strong enough to pass throughendure the ultrasonic vibration [9]. The PTL immobilized on substrates keeps remains intact in various polar and non-polar organic solvents as well as acids, bases, inorganic salts, surfactants and oxidants, with the exception of guanidine solution (GndCl) [9]. The adhesion feature of PTL is originatesd from amyloids contained found in these lysozyme fibers, which haves been commonly been identified used as proteinaceous underwater adhesives for bioadhesion [9]. This mechanism could may be ascribed to a complex sequence oftial events and the co-contributions from of multi-scale molecular and structural amyloid bonds including osmotic pressure-driven solvent depletion force, hydrophobic interactions, physical entanglement and hydrogen bonding/electrostatic interactions [9]. In addition, compared with negatively charged dopamine, which is widely applied in to primeing surfaces for further modification [17], the PTL contains polar functionalities like  such as amines and hydroxyls with mild positive charges over a broad pH range for robust immobilization of negatively charged functional building blocks on Ti substrates [9]. 

The formation of biofilm around dental implants is the essential factor in the evolution and persistence of infection [18]. Moreover, the surgical trauma of implantation can disturb the host defense system, which facilitates bacterial colonization [19]. Thus, it is indispensable absolutely necessary to develop effective strategies to prevent implant-associated infections. Although antibacterial coatings loaded onto Ti surfaces have captured attracted extensive considerable attention owing to the ability of due to the effective inhibitiong of biofilm formation effectively and, relatively long-term antibacterial effect, which are is crucial for to protecting biomedical implants against the constant risk of infection before mucosal healing. In contrasct with monolayer antibacterial coatings, multilayer coatings on a Ti surface constructed by layer-by-layer (LbL) self-assembly technique would can enhance loading capacity and control the release of antibacterial agents in order toto achieve the a long-term antibacterial effect [20].	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

In the present work, multilayer coatings on PTL-primed Ti surfaces were fabricated by alternate adsorptions of polyanions (hyaluronic acid) and polycations (chitosan) through electrostatic interaction based on an LbL self-assembly technique. The whole process is shown in Fig.1Fig. 12. XPS results indicated that the self-assembledy multilayer of chitosan and hyaluronic acid was successfully coated onto the surfaces of Ti discs (Fig. 1d and Table 1). The chitosan layers were loaded with Ag nanoparticles as antibacterial agents. HereIn present study, the Ag nanoparticles were synthesized in a chitosan medium with the addition of the reducing agent VC. The linear macromolecules of chitosan will form tridimensional gridding structures, providing host spaces for silver ions [21]. Thus, in the chitosan medium, the controlled synthesis of Ag nanoparticles in with controlled size, morphology and dispersity can be accomplished when these silver ions are reduced in situ to form nanoparticles as shown in Fig. 4e, producing complexes of chitosan and Ag nanoparticles (CS/AgNP). Moreover, the complexes of CS/AgNP still remained positively charged and thus could be directly adsorbed onto the layer of HA (Fig. 4d and Fig. 1d). This one-step fabrication of complexes of CS/AgNP is a simple and convenient measure method to load an antibacterial coating onto Ti surfaces via the LbL self-assembly technique. 

In the present work, the multilayer coatings loaded with various concentrations of AgNP showed effective antibacterial activity during over the a 14- day period (Fig. 7 and 8). It isThe results suggested that the antibacterial activity is enhanced with the increasing concentrations of AgNP. The planktonic bacteria in the medium and the adherent bacteria on the surfaces of samples are were almost eradicated during the first 5 days by AgNP released from the self-assembledy multilayer during the first 5 days, thus reducing the amount of bacterial colonization on of the surfaces of samples. The antimicrobial effect could be ascribed to the release of Ag+ from AgNP, which has the ability to destroy inhibit the bacterial DNA replication, interrupt bacteria cellular processes and induce reactive oxygen species (ROS) [22,23]. ROS can improve increase the permeability of the bacterial membrane, causing the bacteria to be more susceptible to antibacterial agents. It is worth mentioning that the bacterial suspension in the antibacterial assay was adjusted to the concentration of 105CFU/ml and changed every 24 h in order toto ensure that the samples were subjected to the a strong bacterial attack. The above-mentioned conditions are tougher harsher than the physical situation conditions in vivo, and thus, the efficacy of theectively antibacterial multilayer coatings are is expected to be sustainableed for a longer period of time under physical conditions [16]. In addition, not unlike the relative hydrophobicity of pristine Ti, the hydrophilicity of Ti surfaces coated with a multilayer of HA and CS/AgNP (Fig.3Fig. 3) is contributesd to the reduction of in bacterial cells [20]. The results of the antibacterial activity rate against adherent bacteria on the surfaces of samples demonstrate that the self-assemblyed multilayer of chitosan and hyaluronic acid loaded with AgNP can effectively inhibit the biofilm formation on Ti surfaces during over 14 days. 	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

An adequate period of time and a suitable profile of drug release at an effective antibacterial concentration are demanded necessary to for inhibit ing the biofilm formation before wound healing. Initially, a large amount of Ag was released from the self-assembledy multilayer into the PBS, which was attributed to the outermost layer of chitosan loaded with AgNP, but it Ag release gradually reduced decreased gradually with the increase of in immersion time (Fig. 5). The Ag release profile during over 14 days observed in our study is advisable since because the a surgical wound will heal within 10-14 days, after which the constant release of Ag is not expected recommended due to the cytotoxicity to the host cells. The initial burst of Ag release is able to resist inhibits the immediate colonization of bacteria on the Ti surfaces after implant surgery. Next, sustaineding release of Ag is required to resist bacterial invasion from the outer edges of the wound until mucosal healing. In our design on of the self-assembledy multilayer, the hyaluronic acid (HA) layer played a role in retarding the release of Ag nanoparticles from the lower layer of chitosan. This mechanism is similar to that of the controlled release of minocycline from alginate-coated chitosan microspheres [20]. In this study, the four concentrations levels of AgNP at four levels were able to effectively kill planktonic and adherent bacteria within over 14 days; their cytotoxicity of the four levels was also investigated to find a proper concentration for ensuring normal mucosal healing.	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.	Comment by editor: 
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[bookmark: _GoBack]Concerning the toxicity of silver, it is generally assumed considered that Ag is commonly considered biocompatible at low concentrations and cytotoxic to host cells at high doses [16,24]. This was is related to the a large release of Ag ions due to the high surface energy of smaller AgNP [22]. For biomedical implant applications, smaller Ag particle size does not always lead to better performance. In our work, in comparison to the pristine Ti, the multilayer coatings incorporated with AgNP incorporated (10, 20, 50, 1000m mM) still showed cytotoxicity against MC3T3 cells to a certain extent, as demonstrated by the LDH, ALP activity and cell viability assays (Fig. 9-11). However, the samples of CS/Ag10 with the lowest concentration of AgNP showed better biocompatibility than other groups during the first 4 days due according to the LDH activity assay results (Fig. 9). The cytotoxicity of the samples could may be attributed to the leaching concentration of silver ions and their accumulation in the culture medium during the incubation period [16,22,25]. After 3 days of culturing without changing the culture medium, the cumulative concentration of silver ions leaded to cytotoxicity at day 4. However, recent studies indicate that biomaterials containing a proper amount of silver are biocompatible to with osteoblasts [10,11,26,27]. As a result, it is desirable that the bacteria can be killed without inducing cell cytotoxicity at a properly low concentration of silver ions. Ti surfaces coated with a HA-CS/AgNP multilayer via PTL-priming and the LbL self-assembly technique can exhibit good biocompatibility by controlling the release of silver. Therefore, the antibacterial and biocompatible surfaces of titanium modified by with the HA-CS/AgNP multilayer hasve a perspective property to that prevents post-operation infection in the early stage of implantation, which will be further investigated through future in vivo experiments in future.	Comment by editor: 
Please ensure that the intended meaning has been maintained in this edit.

In conclusion, in contrast to other well-established methods, our surfaces-priming strategy provides an extremely facile, green and powerful approach to preparinge Ti surfaces by using PTL coating, without time-consuming chemical syntheseis and capital-costivecostly processing [9]. Therefore, the initial layer of PTL holds great potential to for the fabrication of e the multilayers loaded with antibacterial agents, osteogenic growth factors, cytokines and/or other functional components on Ti surfaces via the LbL self-assembly technique, which could prevent implant- associated infection and facilitate osseointegration in the early stage of implantation. 
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C%
O%
N%
Ti%
Na%
S%
Ag%
P%
Ti
47.2±0.2
38.2±0.3
4.4±0.1
10.2±0.03
0
0
0
0
Ti-PTL
62.7±0.3
18.3±0.2
18.2±0.1
0
0
0.7±0.1
0
0.1±0.03
Ti-PTL-HA
60.2±0.4
28.8±0.3
9.0±0.2
0
2.0±0.02
0
0
0
Ti-PTL-HA-CS/Ag
49.2±0.2
26.5±0.1
10.6±0.3
0
0
0
13.8±0.2
0
Ti-PTL-HA-CS/Ag-HA
46.8±0.1
28.2±0.1
11.9±0.2
0
0.2
0
12.9±0.2
0
 
Table 1 Elemental composition at the surface of various Ti discs with different treatments as determined by XPS.

Fig.1Fig. 1 XPS wide-scan spectra of (a) pristine Ti, (b) PTL treated Ti (Ti-PTL), (c) Ti-PTL-HA, (d) Ti-PTL-HA-CS/Ag, (e) Ti-PTL-HA-CS/Ag –HA.
 


Fig.2Fig. 2 High-resolution XPS spectra of Ag3d on surface of Ti-PTL-HA-CS/Ag.



Fig.3Fig. 3 Images of contact angle on various Ti discs: (a) pristine Ti, (b) Ti-PTL, (c) Ti-PTL-HA, (d) LbL-CS/Ag, (e) Statistical analysis of the contact angle measurements.


Fig.4Fig. 4 SEM images of surface morphology of Ti discs: (a) pristine Ti, (b) Ti-PTL, (c) Ti-PTL-HA, (d) Ti-PTL-HA-CS/Ag10. (e) TEM image of CS/Ag (100m mM). (f) EDX image of the sample of Ti-PTL-HA-CS/Ag.




Fig.5Fig. 5 Non-cumulative silver release profile in PBS.



Fig.6Fig. 6 CLSM fluorescence microscopy images of (a) pristine Ti, (b) Ti-PTL, (c) LbL-CS/Ag10, (d) LbL-CS/Ag20, (e) LbL-CS/Ag50, (f) LbL-CS/Ag100 showing viability of the bacteria on samples after 7 days.



Fig.7Fig. 7 Antibacterial activity rates against planktonic bacteria in medium (Rp). The antibacterial assays data are expressed as mean as the means±standard deviations (n=3).
One-way ANOVA followed by SNK post hoc test is utilized to determine the level of significance. *p<0.05 and **p<0.01.



Fig.8Fig. 8 Antibacterial activity rates against adherent bacteria on the specimens (Ra). 




Fig.9Fig. 9 LDH activity in medium after culturing for 1 and 4 days on the specimens. 


Fig.1Fig. 10 Cell viability of MC3T3 on the specimens after culturing for 3 days as determined by CCK-8 assay. 


Fig.1Fig. 11 ALP activity of MC3T3 on the specimens after incubation for 7 days. 

Fig.1Fig. 12 Schematic diagram: the process of fabricating the multilayer coatings on the PTL-primed Ti surface and the mechanism of antibacterial ability of this sample under aqueous conditions. As water contacts the surface, the nanoparticles are oxidized to release Ag+.

