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Dimension Reduction

Dimension Reduction (DR) is a favorable preprocessing stage that is used to address the dimensionality
problem of data through feature reduction. It addresses a variety of techniques such as decomposition-
based methods, e.g., Common Spatial Pattern (CSP), Principle Component Analysis (PCA), Singular
Value Decomposition (SVD).

The general term of dimension reduction can be expanded to feature reduction and feature selection.
Feature Reduction (FR), which includes decomposition techniques, is referred to circumstances in which
the feature sets are homogeneous and the aim is to identify a subset of this homogeneous data that
best represent the underlying pattern. Feature Selection (FS) is referred to circumstances in which
the feature set is heterogeneous and contains the features with different natures/types (e.g. frequency,
time-frequency, special-temporal, entropy, variance, etc). The aim of feature selection is to identify a
sub-combination of feature types that only includes the feature types that have the highest contribution
on the detection of underlying patterns.

Sequential feature selection is a conventional approach for identifying a subset of features that
best suits the classification performance with two variations of Sequential Forward Selection (SFS) and
Sequential Backward Selection (SBS). SFS is a bottom-up search approach that gradually adds features
down selected by an evaluation function to an empty set S with the condition of minimizing the mean
square error (MSE) [1]. The current study utilizes Matlab’s 2010b implementation of SFS and SBS (i.e.,
sequentialfs).

Evolutionary-based dimension reductions such as Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) are alternative approaches used for dimension reduction. While sequential feature
selection techniques narrow the number of features by sequential analysis of features using some objective
function (e.g. mean square error), evolutionary based techniques such as genetic algorithm and particle
swarm optimization (PSO) somehow rely on an evolving population of feature sets. These approaches
evolve until converging towards a subset of features that achieve the best classification performance in a
mechanism depicted in Figure A.

Genetic Algorithm is an evolutionary approach developed by John Holland in 1975 [2]. GA utilizes
operators such as natural selection, crossover, and mutation [3] and been successfully applied to several
problems aiming to optimize solution finding process [4]. It takes advantage from Selection, Crossover,
and Mutation stages. In Selection stage chromosomes (solution candidates) are ranked according to their
fitness with a subset of highly ranked chromosomes being chosen for generating a new generation of
chromosomes. In Crossover stage, new generation of chromosomes are evolved from pairs of parenting
chromosomes identified in the selection stage. Such a process is facilitated through dividing the parenting
chromosomes to two equal half and each parenting chromosome contributing to the generation of the child
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Fig. A. A diagram representing the mechanism proposed for dimension reduction using
evolutionary approaches.

via sharing one half of its chromosome. The Mutation stage is the process of introducing randomized
changes to parts of a chromosome. This stage is typically utilized in cases where the population is
converging towards a local optimum without a chance of generating any better solution due to a lack
of genetic diversity. The mutation process can be applied to a single or a sub-set of chromosomes. It
is a custom to maintain (repeat) the best performing chromosome, which is known as Elitism. Various
implementations of GA have been utilized for dimension reduction, feature selection, and early fusion [5, 6,
7, 8, 9, 10, 11, 12, 13, 14]. A comprehensive review of various evolutionary methods and their comparative
performance on a collection of benchmark functions can be found in [15].

Algorithm A represents a pseudocode for the GA-based feature reduction (decomposition). The
members of the population (chromosomes) are represented by a binary vector referred to as mask. The
mask size is equivalent to the number of feature points in the feature set. The population size and the
maximum iteration number are both set to 100. GA-based feature selection uses a procedure akin to
algorithm A, except that the binary mask size is to be equal to the number of feature types in the feature
set and 0 and 1 values in such mask are to be representative of inclusion and omission of all samples
associated to the selected or omitted sample type respectively.

Algorithm A Binary GA pseudo-code for feature reduction

Initialization: Set the population size to 100 and randomly initialize the population by creating binary vectors
of the size of the feature set for each of them. Then, evaluate all the members of the population.
repeat

Selection: Sort the population based on performance and eliminate the lesser half.
Crossover: Run a crossover operator (i.e. propose feature combinations) on the remaining population to
regenerate a new population.
Mutation: Perform a random mutation (i.e. perturb the feature proposals) over some members which have
not improved over time.
Validate: Evaluate all the members of the population (i.e. proposed feature combinations) using train and
validation sets.

until ( bookmaker > 0.9 or maximum iteration is reached )
Evaluation: Select features suggested by the best member of the population and evaluate the test set.

Particle swarm optimization is an evolutionary approach inspired from animal social behaviors.
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Algorithm B PSO pseudecode for feature reduction

Initialization: Randomly initialize the population by creating binary vectors of the size of the feature set for
each of them. Then, evaluate all the members of the population using the validation set.
repeat

Update population: Update the velocity in each particle using (1) and
update the binary vectors using (4).
Evaluation: Evaluate all the members of the population using the validation set.
Update bests: Update personal-best (pi,j) and global-Best (g) of particles using (5) and (6).

until (performance of global-best > 0.9 informedness or the maximum iteration is reached)
Evaluation: Evaluate the test set using the features proposed by the particle which achieved the global-best.

The possible solutions in the search space are modeled using entities called particles. These particles are
defined by their velocities Vi,j and their positions in the search space Xi,j (i represents the particle’s
index and j represents the dimension in the search space) [16]. Particles in PSO algorithm evolve based
on following updating equations:

Vi,j(t) = w ∗ Vi,j(t− 1) + Ci,j + Si,j , (1)

Ci,j = c1r1,j ∗ (pi,j(t− 1)− xi,j(t− 1)), (2)

Si,j = c2r2,j ∗ (gi,j(t− 1)− xi,j(t− 1)), (3)

xi,j(t) = xi,j(t− 1) + Vi,j(t), (4)

where r1,j and r2,j are random values in the range of 0 and 1, c1 and c2 are acceleration coefficients
employed to control the influences of social and cognitive components. Inertia Weight w is employed to
control the influence of previous iteration’s velocity (decision) in the current iteration t. Large and small
inertia weights causes exploration and exploitation resulting in local-minima avoidance and convergence
towards optimum respectively.

In basic PSO, particles memories their best individual and swarm findings. These are referred to
as local/personal and global-best solutions. The personal-best solutions, pi,j , is the best solution found
by each particle and global-best solutions, gi,j , is the best performing solution found by the swarm. To
update personal and global best solutions, we iteratively apply:

pi(t) =

{
pi(t− 1) if f(xi(t)) >= f(pi(t− 1))
xi(t) otherwise.

(5)

g(t) = arg min {f(p1(t)), f(p2(t)), ...f(ps(t))} . (6)

Algorithm B represents a PSO-based feature reduction scheme. Similar to algorithm A members of
the population (particles) are defined by a binary vector with the same size as the dimension of feature
set. These vectors are referred to as masks. Table A reports the initial parameter adjustment values.
Table B presents settings of various PSO based dimension reduction techniques applied in the study.
PSO-based feature selection also employs a similar algorithm, where the binary mask size is to be equal
to the number of feature types in the feature set and 0 and 1 values in such mask are to be representative
of inclusion and omission of all samples associated to the selected or omitted sample type, respectively.
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Table A. The initial parameter setup of PSO

Parameters The Value The Adjustment Method
c1 0.5 Fixed Acceleration Coefficient
c2 0.5 (FAC)
w1 0.2 Linearly Decreasing Inertia Weight
w2 1 (LDIW)

Table B. Parameter settings of the variations of PSO approach employed in the study

Inertia Acceleration Max Population
Approach Weight Coefficient iteration size Details

W1 W2 C1 C2

PSO-based decomposition 1 0.2 1 0.5 2.5 100 100 Basic PSO with LDIW and
Fix Acceleration Coefficients
with 90% decomposition

Mutated PSO-based decom-
position 1

0.2 1 0.5 2.5 100 100 Mutation based PSO using
LDIW and Fix Acceleration
Coefficients
with 90% decomposition

Mutated PSO-based decom-
position 2

0.2 1 0.5 2.5 100 100 Mutation based PSO using
LDIW and Fix Acceleration
Coefficients
with 50% decomposition

Mutated PSO-based decom-
position 3

0.729844 0.729844 0.5 0.5 100 100 Mutation based PSO using
Fix inertia weight and Ac-
celeration Coefficients with
90% decomposition

Additional experiments

More details on combination of features

This experiment studies the fusion of features meanwhile employing GA and PSO methods for dimen-
sion reduction. First, binary GA and binary PSO are used for sub-selecting the features and training
the classifiers. In addition, modified versions of PSO are also considered in order to better assess the
contribution of the resulting evolutionary based decomposition methods. These variations address issues
such as reduction in the decomposition percentage and mutation of particles that are sub-selecting the
features in addition to two different types of parameter settings. The list of the studied approaches are
presented in Table B.

Figure B depicts the results of the evolutionary based approaches, SFS, SBS, and the ‘Full Set’ as
a baseline. The results indicate that the variations of PSO-based decomposition methods show better
overall performance in comparison with SFS method while Mutated PSO-based decomposition 2 method
illustrated the best performance among them with only 0.1 bookmaker informedness below the best
performing method and less than 0.08 below the full set. The combinations of Polynomial or RBF SVM
with either SBS or GA-based decomposition shows no significant difference from the performance achieved
by the Full Set. Nonetheless, the overall advantage of the combination of features using SBS and linear
SVM is absolutely evident from the results.

The statistical significance analysis of results reveals significant differences (p = 0.0001 < 0.05) among
dimension reduction approaches applied, i.e., selection, decomposition, none-reduction. However, no
significance is observable among classifiers and the interactions of classifiers and dimension reduction
approaches (p = 0.2515 > 0.05 and p = 0.7095 > 0.05 respectively). Further, analysis of significance
among the dimension reduction approaches indicated that SBS, GA-based decomposition, and none-
reduction (i.e. Full Set) are significantly different from PSO-based decomposition and SFS approach.

Sample size

Despite successful above chance valence recognition, the limited number of training samples could have
affected the overall performance of the methods. To address this issue, we utilize ensemble learning
approach using bagging with repetition. We generate 100 random manipulations of the training samples
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Fig. B. Performance achieved by conventional and evolutionary based decomposition
methods.Mean of classification accuracies across folds and repetitions (%) and their
associated standard errors are added to each bar as a second measurement unit.

in each fold to generate 100 training sets (so called bags) and use them for training individual SVM
classifiers. Afterwards, we assess the test set using each classifier and use the weighted summation
operator to derive a decision for each fold. Both baseline and feature combination experiments are
studied using this approach. The result of baseline experiment using bagging is summarized in Figure C.
It indicates bagging and non-bagging approaches are almost similar. In other words, the classification
performance is not necessarily affected by the number of training samples.

The same procedure applied to the combination of features in a mixture of expertise scenario where
separate classifiers are trained on one feature type at the time and the overall classification of the test
set is computed through summation and weighted summation aggregation. The experiment includes
all the previously tested methods as well as a GA based early fusion scheme, which contrarily to the
former GA-based decomposition, captures all feature bins of sub-selected features in its reduced feature-
set for training the classifiers. Table C summarizes the methods and their abbreviations through the
experiments.

The results, as depicted in Figure D, indicate feasibility of GA based early fusion and the combinations
of GA based decomposition and bagging technique. The significance analysis of the results indicates a
significant difference among dimension reduction approaches (p = 0 < 0.05), classifiers (p = 0.0033 <
0.05), and the interactions of classifiers and dimension reduction methods (p = 0.0133 < 0.05). Further
analysis of the results also indicated that GA based feature selection, GA-based decomposition, and
mixture of all features are not significantly different from each other while such significance exist between
them and variations of bagging and mixture of expertise methods. To summarize, increasing the training
samples through either bagging, mixture of expertise, or combination of mixture of expertise and bagging
performs similar to the original methods and the classification performance is not necessarily affected by
the number of training samples.
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Fig. C. Analysis of individual features using bagging approaches
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Table C. Sample size and feature combination: the methods, their abbreviations, and
properties.

Approach Base Feature Decomposition Bagging Mixture Summation Weighted
Approach Selection of Expertise Summation

GA-based feature
selection

GA
√

x x x x x

Bagging Full Set x x
√

x
√

x
GA-based decompo-
sition & Bagging

GA x
√ √

x x x

GA-based decompo-
sition & Sum Bag-
ging

GA x
√ √

x
√

x

GA-based decompo-
sition & Weighted
Sum Bagging

GA x
√ √

x x
√

Sum Mixture of Ex-
pertise

Full Set x x x
√ √

x

Weighted Sum Mix-
ture of Expertise

Full Set x x x
√

x
√

Sum Bagging &
Mixture of Exper-
tise

Full Set x x
√ √ √

x

Weighted Sum Bag-
ging & Mixture of
Expertise

Full Set x x
√ √

x
√

Table D. Confusion matrices: mean features and RBF SVM.

(a) mean saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 11.5 46.0 42.5

pleasant 14.5 47.0 38.5
neutral 16.0 52.0 32.0

(b) mean saccade slope

Prediction

unpleasant pleasant neutral
15.5 39.5 45.0
20.5 43.0 36.5
16.0 30.0 54.0

(c) mean saccade orientation

Prediction

unpleasant pleasant neutral
6.0 51.0 43.0
18.0 47.5 36.0
19.5 49.0 31.5

(d) mean saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 22.5 41.0 36.5

pleasant 4.5 40.0 55.5
neutral 3.5 26.0 70.5

(e) mean saccade duration

Prediction

unpleasant pleasant neutral
32.0 49.0 19.0
20.5 69.0 10.5
39.0 46.0 15.0

(f) mean fixation duration

Prediction

unpleasant pleasant neutral
86.0 4.5 9.5
68.0 3.0 29.0
70.0 9.5 20.5

Confusion matrices

Bookmaker Informedness is employed as the main measurement unit for assessing the performance of
approaches. Aiming to provide better understanding of the results, the average accuracies and standard
errors are also depicted in all of the relevant figures. Although we considered the employed assessment
measurement mechanisms and units informative enough, the confusion matrices of the results achieved
within each experiment are also provided in this section. The mechanism utilized for reporting the
confusion matrices is based on summation of the matrices within folds, repetitions, and if applicable
methods and calculating the average accuracy for each component/element of the contingency matrix
using following equation:

CMk,j =
cmk,j∑n
i=1 cmi,j

(7)

where k and j represent row and column indexes respectively and n is the total number of rows in the
contingency matrix (e.g., n = 3 in this study).

References

1. Marcano-Cedeno A, Quintanilla-dominguez J, Cortina-Januchs MG, Andina D. Feature selec-
tion using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural
Network. In: IECON; 2010. p. 2845–2850.
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Table E. Confusion matrices: mean features and polynomial SVM.

(a) mean saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 1.0 76.0 23.0

pleasant 1.5 75.5 23.0
neutral 3.0 75.0 22.0

(b) mean saccade slope

Prediction

unpleasant pleasant neutral
41.0 15.5 43.5
50.0 14.0 36.0
36.5 15.5 48.0

(c) mean saccade orientation

Prediction

unpleasant pleasant neutral
27.0 34.5 38.5
39.5 21.0 39.5
37.0 25.5 37.5

(d) mean saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 13.0 30.5 56.5

pleasant 0 24.5 75.5
neutral 0 22.0 78.0

(e) mean saccade duration

Prediction

unpleasant pleasant neutral
9.5 81.5 9.0
2.0 93.5 4.5
9.0 84.5 6.5

(f) mean fixation duration

Prediction

unpleasant pleasant neutral
94.0 5.0 1.0
80.5 9.0 10.5
76.0 13.0 11.0

Table F. Confusion matrices: mean features and linear SVM.

(a) mean saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 1.0 56.0 34.0

pleasant 11.5 53.5 35.0
neutral 14.0 60.5 25.5

(b) mean saccade slope

Prediction

unpleasant pleasant neutral
3.0 29.5 52.5
22.0 29.5 48.5
17.0 26.0 57.0

(c) mean saccade orientation

Prediction

unpleasant pleasant neutral
17.5 42.0 40.5
25.0 42.5 32.5
25.5 38.5 36.0

(d) mean saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 21.5 37.0 41.5

pleasant 0.5 40.0 59.5
neutral 3.5 23.0 73.5

(e) mean saccade duration

Prediction

unpleasant pleasant neutral
31.0 50.0 19.0
20.5 69.5 10.0
38.0 46.0 16.0

(f) mean fixation duration

Prediction

unpleasant pleasant neutral
83.5 5.5 11.0
66.5 3.5 30.0
64.0 12.0 24.0

Table G. Confusion matrices: individual features and RBF SVM.

(a) fixation density map

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 49.5 31.5 19.0

pleasant 47.5 30.0 22.5
neutral 19.5 36.0 44.5

(b) 10 Salient locations

Prediction

unpleasant pleasant neutral
31.0 9.5 59.5
15 38.5 46.5

25.5 18.0 56.5

(c) fixation histogram

Prediction

unpleasant pleasant neutral
49.5 23.5 27.0
38.0 28.5 33.5
16.0 29.5 54.5

(d) saliency histogram

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 30.5 29.5 40.0

pleasant 38.0 23.0 39.0
neutral 24.5 7.0 68.5

(e) histogram of fixation duration

Prediction

unpleasant pleasant neutral
25.0 32.0 43.0
11.0 39.0 50.0
5.0 14.5 80.5

(f) histogram of saccade duration

Prediction

unpleasant pleasant neutral
29.0 32.0 39.0
34.0 14.0 52.0
11.0 12.5 76.5

(g) histogram of saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 30.0 22.0 48.0

pleasant 26.5 24.5 49.0
neutral 10.5 17.5 72.0

(h) histogram of saccade slope

Prediction

unpleasant pleasant neutral
13.0 52.0 35.0
14.5 53.0 32.5
8.5 56.0 35.5

(i) histogram of saccade orientation

Prediction

unpleasant pleasant neutral
22.0 40.5 37.5
31.5 36.5 32.0
37.5 29.0 33.5

(j) histogram of saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 33.0 29.5 37.5

pleasant 35.0 20.5 44.5
neutral 13.0 9.0 78.0

(k) full set

Prediction

unpleasant pleasant neutral
23.5 8.5 68.0
10.0 40.0 50.0
3.0 9.0 88.5
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Table H. Confusion matrices: individual features and polynomial SVM.

(a) fixation density map

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 23.0 77.0 00.0

pleasant 25.5 73.5 1.0
neutral 20.0 63.5 16.5

(b) 10 Salient locations

Prediction

unpleasant pleasant neutral
31.0 21.5 47.5
10.0 60.0 30.0
17.0 35.5 47.5

(c) fixation histogram

Prediction

unpleasant pleasant neutral
12.5 84.5 3.0
11.0 78.5 10.5
5.0 72.0 23.0

(d) saliency histogram

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 54.0 13.0 33.0

pleasant 56.5 11.5 32.0
neutral 37.5 7.0 55.5

(e) histogram of fixation duration

Prediction

unpleasant pleasant neutral
17.0 17.5 65.5
7.5 29.0 63.5
1.5 7.0 91.5

(f) histogram of saccade duration

Prediction

unpleasant pleasant neutral
36.5 31.5 32.0
38.0 16.0 46.0
15.0 12.0 73.0

(g) histogram of saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 43.0 36.0 21.0

pleasant 44.5 28.5 27.0
neutral 27.0 32.0 41.0

(h) histogram of saccade slope

Prediction

unpleasant pleasant neutral
14.5 53.5 32.0
14.5 53.0 32.5
16.0 58.5 25.5

(i) histogram of saccade orientation

Prediction

unpleasant pleasant neutral
19.0 49.5 31.5
20.5 62.0 17.5
31.0 45.5 23.5

(j) histogram of saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 35.5 54.5 10.0

pleasant 53.0 39.5 8.0
neutral 24.5 39.5 36.0

(k) full set

Prediction

unpleasant pleasant neutral
20.0 23.0 57.0
6.0 53.0 41.0
6.5 24.0 69.5

Table I. Confusion matrices: individual features and linear SVM.

(a) fixation density map

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 45.5 34.0 20.5

pleasant 41.0 35.5 23.5
neutral 16.0 38.5 45.5

(b) 10 Salient locations

Prediction

unpleasant pleasant neutral
33.0 14.5 53.5
20.5 43.5 36.0
28.0 15.5 56.5

(c) fixation histogram

Prediction

unpleasant pleasant neutral
51.0 23.0 26.0
38.5 26.0 35.5
17.0 33.5 49.5

(d) saliency histogram

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 35.0 29.0 36.0

pleasant 42.0 24.0 34.0
neutral 31.0 6.0 63.0

(e) histogram of fixation duration

Prediction

unpleasant pleasant neutral
29.5 29.0 41.5
8.5 42.0 49.5
8.5 14.0 77.5

(f) histogram of saccade duration

Prediction

unpleasant pleasant neutral
23.0 35.5 41.5
31.5 19.0 49.5
7.0 15.5 77.5

(g) histogram of saccade length

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 25.0 25.0 50.0

pleasant 30.0 21.5 48.5
neutral 9.5 17.5 73.0

(h) histogram of saccade slope

Prediction

unpleasant pleasant neutral
8.5 59.0 32.5
7.0 70.5 22.5
6.0 68.5 25.5

(i) histogram of saccade orientation

Prediction

unpleasant pleasant neutral
22.5 35.0 42.5
35.5 34.5 30.0
47.0 25.5 27.5

(j) histogram of saccade velocity

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 33.0 31.5 35.5

pleasant 38.0 19.0 43.0
neutral 16.5 12.5 71.0

(k) full set

Prediction

unpleasant pleasant neutral
37.5 15.0 47.5
22.5 40.5 37.0
13.0 13.0 74.0
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Table J. Confusion matrices: feature selection/decomposition and RBF SVM.

(a) SFS

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 33.5 32.5 34.0

pleasant 32.0 40.0 28.0
neutral 19.5 29.0 51.5

(b) SBS

Prediction

unpleasant pleasant neutral
38.0 12.5 49.5
20.5 39.5 40.0
16.5 16.5 67.0

(c) SVD

Prediction

unpleasant pleasant neutral
24.0 12.5 63.5
16.0 36.5 47.5
3.5 12.0 84.5

(d) PCA

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 21.0 16.0 63.0

pleasant 18.5 35.5 46.0
neutral 6.0 14.0 80.0

(e) GA-based decomposition

Prediction

unpleasant pleasant neutral
28.0 20.0 52.0
16.0 45.5 38.5
7.5 18.0 74.5

(f) mutated PSO-based
decomposition 2

Prediction

unpleasant pleasant neutral
26.0 30.0 44.0
21.5 38.0 40.5
12.0 21.5 66.5

(g) GA-based feature selection

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 32.0 28.0 40.0

pleasant 26.0 37.0 37.0
neutral 12.0 24.0 64.0

(h) full set

Prediction

unpleasant pleasant neutral
23.5 8.5 68.0
10.0 40.0 50.0
3.0 9.0 88.0

Table K. Confusion matrices: feature selection/decomposition and polynomial SVM.

(a) SFS

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 35.5 27.0 37.5

pleasant 31.0 36.5 32.5
neutral 23.0 24.0 53.0

(b) SBS

Prediction

unpleasant pleasant neutral
31.5 25.0 43.5
11.5 55.0 33.5
12.5 24.5 63.0

(c) SVD

Prediction

unpleasant pleasant neutral
31.5 21.5 47.0
7.0 50.0 43.0
8.5 27.0 64.5

(d) PCA

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 21.0 31.0 48.0

pleasant 2.5 61.0 36.5
neutral 5.5 29.0 65.5

(e) GA-based decomposition

Prediction

unpleasant pleasant neutral
26.5 28.5 45.0
8.0 53.0 39.0
8.5 23.5 68.0

(f) mutated PSO-based
decomposition 2

Prediction

unpleasant pleasant neutral
29.0 35.5 35.5
27.5 43.5 29.0
15.0 26.5 58.5

(g) GA-based feature selection

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 36.0 32.0 32.0

pleasant 24.5 42.0 33.5
neutral 15.0 20.0 65.0

(h) full set

Prediction

unpleasant pleasant neutral
20.0 23.0 57.0
6.0 53.0 41.0
6.5 24.0 69.5

Table L. Confusion matrices: feature selection/decomposition and linear SVM.

(a) SFS

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 33.5 33.0 33.5

pleasant 30.5 41.0 28.5
neutral 23.0 30.0 47.0

(b) SBS

Prediction

unpleasant pleasant neutral
40.5 20.0 39.5
21.0 44.0 35.0
12.0 15.0 73.0

(c) SVD

Prediction

unpleasant pleasant neutral
33.0 17.5 49.5
20.0 39.0 41.0
9.0 11.0 80.0

(d) PCA

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 37.0 16.5 46.5

pleasant 19.5 43.5 37.0
neutral 10.5 16.5 73.0

(e) GA-based decomposition

Prediction

unpleasant pleasant neutral
38.0 16.5 45.5
25.0 35.5 39.5
17.0 16.0 67.0

(f) mutated PSO-based
decomposition 2

Prediction

unpleasant pleasant neutral
27.5 31.0 41.5
26.5 31.5 42.0
10.5 13.0 76.5

(g) GA-based feature selection

Prediction
unpleasant pleasant neutral

A
c
t
u
a
l unpl... 34.0 25.0 41.0

pleasant 29.5 40.0 30.5
neutral 16.0 22.0 62.0

(h) full set

Prediction

unpleasant pleasant neutral
37.5 15.0 47.5
22.5 40.5 37.0
13.0 13.0 74.0
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Fig. D. Analysis of features combinations using bagging approaches.
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