
Supplementary Methods

1 Quantifying heterogeneity in DNase I cleavage patterns

We made use of the connection between the multinomial distribution and binomial distribution to explore
the amount of heterogeneity in DNase I cleavage patterns across genomic sites. Specifically, if the read
counts per base pair are multinomially distributed conditional on the total read count in a genomic window,
then the number of reads mapping to the left half of the window conditional on total read count should
be binomially distributed. Based on this, we compared the true distribution of the proportion of reads
mapping to the left half of a genomic window to a distribution of proportions computed by sampling read
counts from a binomial distribution.

To illustrate, we considered the transcription factor SP1, and focused on the 1000 motif instances with
the highest ChIP-seq signal and with at least 10 DNase-seq reads mapped to a 100 bp window around the
motif instance. For each window, we computed the ‘true’ proportion of reads mapping to the left half of
the window. Next, assuming that the count on the left half conditional on the total count is binomially
distributed, we computed the maximum likelihood estimate of the binomial parameter p̂ using data from
these windows. Finally, for each window, we sampled a read count for the left half conditional on the
total count for that window from a binomial distribution whose parameter was set to be the maximum
likelihood estimate p̂, and computed a ‘simulated’ proportion of reads mapping to the left half of the
window. Histograms of the ‘true’ proportions and ‘simulated’ proportions are shown in Figure 1 in the
main text.

2 msCentipede model for one replicate

Consider a genomic window of length L around each of N putative binding sites. We define Xn = (Xn
l )L

l=1

for n = 1, . . . , N , where Xn
l is read count at lth base pair in the window around the nth site. Let Zn denote

a binary indicator for whether the nth site is bound (Zn = 1). A mixture model at the nth site can be
written as

P(Xn) = P(Xn|Zn = 1)P(Zn = 1) + P(Xn|Zn = 0)P(Zn = 0), (1)

where the prior probability P(Zn = 1) = ζn can be modeled as a logistic function of genomic information
(e.g. position weight matrix score and sequence conservation score of the motif instance) as in CEN-
TIPEDE. Specifically, if Sn = {Sn1, . . . , SnF} is a vector representing various genomic features for the nth

site, then ζn = 1

1+e
−

P

f γf Snf
, where γf captures how much the f th feature informs the prior probability that

a site is bound by a transcription factor.
At the zeroth scale, we model the total number of reads in the entire region Y n

01 :=
∑

l X
n
l as follows:

Y n
01 ∼ Poisson(λn). (2)

At the first scale, conditional on Y n
01, we model the number of reads in the first half of the region Y n

11 :=
∑

l≤L/2 Xn
l using a binomial distribution, Y n

11 | Y n
01 ∼ binomial(Y n

01, p
n
01). Then, the number of reads in

the second half of the region is determined to be Y n
12 := Y n

01 − Y n
11. At the second scale, conditional

on Y n
11, we model the read count in the first quarter of the region Y n

21 using a binomial distribution,
Y n

21 | Y n
11 ∼ binomial(Y n

11, p
n
11), leading to the read count in the second quarter of the region Y n

22 := Y n
11−Y n

21.
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Figure S1: Multi-scale models for inhomogeneous Poisson processes. Suppose we have observations
Xn = (Xn

l )4
l=1 on four bases. Multi-scale models assume that Y n

01 ∼ Poisson(µn), Y n
11 | Y n

01 ∼
binomial(Y n

01, p
n
01) (then, Y n

12 = Y n
01 − Y n

11), Y n
21 | Y n

11 ∼ binomial(Y n
11, p

n
11) (then, Y n

22 = Y n
11 − Y n

21), and
Y n

23 | Y n
12 ∼ binomial(Y n

12, p
n
12) (then, Y n

24 = Y n
12 − Y n

23). It follows from elementary properties of the Poisson
distribution (see [2] and [3] for details) that it is equivalent to Y n

2l = Xn
l ∼ Poisson(µn

l ) for l = 1, 2, 3, 4,
where µn

1 = λnpn
01p

n
11, µn

2 = λnpn
01(1 − pn

11), µn
3 = λn(1 − pn

01)p
n
12, and µn

4 = λn(1 − pn
01)(1 − pn

12).

Conditional on Y n
12, the read count in the third quarter of the region Y n

23 is modeled using a binomial
distribution, Y n

23 | Y n
12 ∼ binomial(Y n

12, p
n
12), leading to the read count in the fourth quarter of the region

Y n
24 := Y n

12 − Y n
23. This process continues through the scales: at the J th scale (finest-resolution), there are

L = 2J parts of the region. The read counts in the lth part of the region Y n
Jl, which is equivalent to Xn

l , is
modeled as follows:

Y n
J,2k−1 | Y n

J−1,k ∼ binomial(Y n
J−1,k, p

n
J−1,k), (3)

Y n
J,2k = Y n

J−1,k − Y n
J,2k−1, (4)

for k = 1, . . . , 2J−1 (see Figure S1 for a brief illustration of the model).
When Zn = 1, heterogeneity across genomic sites is modeled as follows:

λn|Zn = 1 ∼ gamma
(

α, α/λ̄0

)

, (5)

pn
jk|Z

n = 1 ∼ beta(p̄jkτj, (1 − p̄jk)τj), (6)

where α and λ̄0 capture the mean (λ̄0) and variance (
λ̄2
0

α
) in overall DNase I hypersensitivity of TF bound

genomic locations, and pjk and τj capture the mean and variance in the DNase I cleavage profiles across
TF bound genomic locations. When Zn = 0, we model heterogeneity in total DNase I hypersensitivity as
follows:

λn|Zn = 0 ∼ gamma
(

αo, αo/λ̄o
0

)

, (7)

pn
jk|Z

n = 0 ∼ δ0.5. (8)

3 msCentipede model for multiple replicates

Suppose we have S replicate DNase-seq measurements for a particular cell type. Given a genomic window
of length L around each of N putative binding sites, we define Xn,s = (Xn,s

l )L
l=1 for n = 1, . . . , N and

s = 1, . . . , S, where Xn,s
l is read count at lth base pair in the window around the nth site for the sth

replicate.
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In the mixture model specified earlier, conditional on Zn = 1, we can model the total number of reads
in the entire region Y n,s

01 :=
∑

l X
n,s
l as follows:

Y n,s
01 ∼ Poisson(λn,s), (9)

λn,s|Zn = 1 ∼ gamma
(

αs, αs/λ̄s
0

)

, (10)

where replicate-specific parameters, αs and λ̄s
0, capture replicate-specific mean (λ̄s

0) and variance (
λ̄s2
0

αs ). At
the remaining scales, Y n,s

jk , k = 1, . . . , 2j−1 and j = 1, . . . , J , conditional on Y n,s
01 and Zn = 1 is modified as

follows:

Y n,s
j,2k−1 | Y n,s

j−1,k ∼ binomial(Y n,s
j−1,k, p

n,s
jk ), (11)

pn,s
jk |Z

n = 1 ∼ beta(p̄jkτj, (1 − p̄jk)τj). (12)

Ideally, it is desirable to model the variation across genomic sites and the variation across replicates
separately. However, in practice, we usually have only two or three replicate DNase-seq measurements
in a given cell type, making it difficult to accurately quantify the variation across replicates. Instead, we
assume that variation across replicates and variation across genomic sites are the same. The background
model P(Xn|Zn = 0) can be constructed in a similar way.

4 Maximum likelihood estimation and inference

Inference for the above model requires computing the posterior distribution P(Z|X), evaluated at the max-
imum likelihood estimate of the model parameters Θ∗, where Θ = {p̄jk, τj, α

s, λ̄s
0, α

s
o, λ̄

s
0o}. This problem

is equivalent to finding the optimal distribution in a parameteric family of distributions q(Z) that has the
smallest Kullback-Leibler (KL) divergence to the posterior distribution of interest.

q∗(Z) = arg min
q(Z)

∑

Z

q(Z) log
q(Z)

P(Z|X)
(13)

= log P(X; Θ) − arg max
q(Z)

[

∑

Z

q(Z) log
P(X|Z, Θ)P(Z)

q(Z)

]

(14)

= log P(X; Θ) − arg max
q(Z)

F [q(Z); Θ]. (15)

The first term in 15 is the log likelihood of the data for some fixed value for the model parameters Θ.
Thus, minimizing the KL divergence is equivalent to maximizing the function F [q(Z); Θ], keeping the
model parameters fixed. Note that, when the true posterior distribution P(Z|X) lies in the specified
parametric family, the maximum value F [q∗(Z); Θ] is equal to the log likelihood of the data log P(X; Θ)
(i.e., the minimum KL divergence is zero). The maximum likelihood estimate of the model parameters Θ
can then be obtained by maximizing the function F [q∗(Z); Θ]. Maximizing F [q(Z); Θ] with respect to q(Z)
and Θ, iteratively till convergence, gives us the maximum likelihood estimate of the model parameters and
posterior probability of transcription factor binding.

Conditional on the model parameters, the data at all putative binding site in all replicates are indepen-
dent. Thus, the true posterior P(Z|X) will factorize as P(Z|X) =

∏

n P(Zn|Xn), motivating the following
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choice for q(Z).

q(Z) =
∏

n

Bernoulli(ζ̃n). (16)

The function to be maximized can now be written as follows:

F [q(Z); Θ] =
∑

n

∑

Zn

q(Zn) log P(Xn|Zn, Θ) +
∑

n

∑

Zn

q(Zn) log
P(Zn)

q(Zn)
(17)

=
∑

n

ζ̃n log P(Xn|Zn = 1, Θ) + (1 − ζ̃n) log P(Xn|Zn = 0, Θ) (18)

+ ζ̃n log
ζn

ζ̃n

+ (1 − ζ̃n) log
1 − ζn

1 − ζ̃n

(19)

Maximizing F with respect to ζ̃n for fixed Θ gives

log
ζ̃∗
n

1 − ζ̃∗
n

≡ log
P(Zn = 1|Xn)

1 − P(Zn = 1|Xn)
= log

ζn

1 − ζn

+ log
P(Xn|Zn = 1, Θ)

P(Xn|Zn = 0, Θ)
(20)

This equation gives us the posterior probability that a site is bound, and is equivalent to the E-step in the
EM algorithm. Using the model specified in the previous section, we have

log P(Xn|Zn = 1, Θ) =
∑

s

log P(Y n,s
01 |αs, λ̄s

0) +
∑

s

J
∑

j=1

2(j−1)
∑

k=1

log P(Y n,s
j,2k−1|Y

n,s
j−1,k, p̄jk, τj), (21)

where

P(Y n,s
01 |αs, λ̄s

0) = negative binomial

(

αs,
λ̄s

0

αs + λ̄s
0

)

, (22)

P(Y n,s
j,2k−1|Y

n,s
j−1,k, p̄jk, τj) = beta binomial(Y n,s

j−1,k; p̄jkτj, (1 − p̄jk)τj). (23)

A similar likelihood function for the background model log P(Xn|Zn = 0, Θ) can be written.
Keeping q(Z) fixed, the function F can be maximized with respect to the model parameters Θ, within

appropriate constraints, using standard optimization solvers. By iterating between computing the posterior
probability q(Z) (at fixed Θ) and optimizing F (keeping q(Z) fixed), until convergence, we get the maximum
likelihood estimates of the parameters Θ. In this sense, the iterative variational optimization scheme
described above is equivalent to the EM algorithm for computing the maximum likelihood estimates of the
parameters.

In the current version of the software, we optimize the model parameters Θ using cvxopt [1], a standard
primal-dual interior-point optimization solver. In addition, by treating the simple iterative algorithm above
as a fixed-point solver, we can accelerate its convergence [4]. While this accelerated version reaches the
optimum using fewer evaluations of the gradient and hessian of F , this gain is at the expense of the
monotonicity guaranteed by the simple iterative algorithm.
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