## EDXRF spectra

The EDXRF spectra (Fig. S3) and quantitative analysis (the results are listed in Table S2) of the $\mathrm{t}-\mathrm{Ni}$ system reveals the presence of major ( Ni and Pd ) and minor elements $(\mathrm{Cr}, \mathrm{Mn}$ and Fe ). In the preliminary study the Pd concentration was determined with $\mathrm{Pd} \mathrm{L} \alpha$ line and Rh target X-ray tube operated at maximum voltage of 30 keV . The determined concentration of $\operatorname{Pd}(2.3 \%)$ was much higher than the expected value ( $1.0 \%$ ). It can be explained by the low energy of L $\alpha$ line and the low information depth $\mathrm{d}_{99 \%}$ of ca $4 \mu \mathrm{~m}$ (see Table 1). In consequence, the Pd concentration is overestimated because Pd nanoparticles are located onto the surface of Ni particles. The reliable bulk composition can be obtained with $\operatorname{Pd} \mathrm{K} \alpha$ line because of much higher energy and, in consequence, a much larger penetration range of Xrays compared to $\mathrm{Pd} \operatorname{L\alpha } \operatorname{line}\left(\mathrm{d}_{99 \%}=60-85 \mu \mathrm{~m}\right)$. This time, the determined Pd concentration is close to the expected value. It should be noted here that the $\mathrm{Pd} / \mathrm{Ni}$ catalysts have very similar bulk composition before and after use.

Table S2. EDXRF analysis of nano-Pd/Ni catalyst ( $\mathrm{t}-\mathrm{Ni}$ ) before (BR) and after reaction (AR). Results in \% m/m.

| Element | Pd L $\alpha$ line; $\mathrm{d}_{99 \%}=4 \mu \mathrm{~m}^{\mathrm{a}}$ |  |  | $\mathrm{Pd} \mathrm{K} \alpha$ line; $\mathrm{d}_{99 \%}=60-85 \mu \mathrm{~m}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BR | AR | BR | AR |  |
| Pd | $2.43 \pm 0.11$ | $2.31 \pm 0.14$ |  | $1.23 \pm 0.05$ | $1.05 \pm 0.04$ |
| Ca | $2.13 \pm 0.14$ | $2.04 \pm 0.18$ |  | $2.21 \pm 0.23$ | $2.09 \pm 0.26$ |
| Cr | $0.27 \pm 0.05$ | $0.40 \pm 0.04$ |  | $0.37 \pm 0.02$ | $0.36 \pm 0.02$ |
| Mn | $0.055 \pm 0.007$ | $0.068 \pm 0.006$ |  | $0.074 \pm 0.004$ | $0.076 \pm 0.005$ |
| Fe | $2.41 \pm 0.10$ | $2.46 \pm 0.10$ |  | $2.52 \pm 0.08$ | $2.41 \pm 0.09$ |
| Ni | $92.7 \pm 1.9$ | $92.7 \pm 2.2$ |  | $93.6 \pm 1.5$ | $94.0 \pm 2.0$ |

[^0]
[^0]:    ${ }^{\text {a }}$ the information depth $\mathrm{d}_{99 \%}$ for element $i$ that would yield $99 \%$ of the element intensity is given by the formula $d_{99 \%}=4.6 / \chi\left(\mathrm{E}_{0}, \mathrm{E}_{\mathrm{i}}\right) \times \rho$, where $\rho$ is the density of the sample and $\chi\left(\mathrm{E}_{0}, \mathrm{E}_{\mathrm{i}}\right)=\mu\left(\mathrm{E}_{0}\right) \csc \left(\phi_{1}\right)+\mu\left(\mathrm{E}_{\mathrm{i}}\right) \csc \left(\phi_{2}\right)$ is total mass-attenuation coefficient of the sample. $\mu\left(\mathrm{E}_{0}\right)$ and $\mu\left(\mathrm{E}_{\mathrm{i}}\right)$ represent the mass attenuation coefficients of the sample at the primary $\mathrm{E}_{0}$ and fluorescent radiation $\mathrm{E}_{\mathrm{i}}\left(\mathrm{Pd} \mathrm{L} \alpha\right.$ or $\mathrm{Pd} \mathrm{K} \alpha$ line at 2.84 and 19.28 keV , respectively), $\phi_{1}$ and $\phi_{2}$ are the incidence and take-off angles, respectively.

