EDXRF spectra

The EDXRF spectra (Fig. S3) and quantitative analysis (the results are listed in Table S2) of the t-Ni system reveals the presence of major (Ni and Pd) and minor elements (Cr, Mn and Fe). In the preliminary study the Pd concentration was determined with Pd L α line and Rh target X-ray tube operated at maximum voltage of 30 keV. The determined concentration of Pd (2.3 %) was much higher than the expected value (1.0%). It can be explained by the low energy of L α line and the low information depth d_{99%} of ca 4 µm (see Table 1). In consequence, the Pd concentration is overestimated because Pd nanoparticles are located onto the surface of Ni particles. The reliable bulk composition can be obtained with Pd K α line because of much higher energy and, in consequence, a much larger penetration range of X-rays compared to Pd L α line (d_{99%} = 60-85 µm). This time, the determined Pd concentration is close to the expected value. It should be noted here that the Pd/Ni catalysts have very similar bulk composition before and after use.

 Table S2. EDXRF analysis of nano-Pd/Ni catalyst (t-Ni) before (BR) and after reaction

 (AR). Results in % m/m.

Element -	Pd L α line; d _{99%} = 4 μ m ^a		Pd K α line; $d_{99\%} = 60-85 \ \mu m$	
	BR	AR	BR	AR
Pd	2.43 ± 0.11	2.31 ± 0.14	1.23 ± 0.05	1.05 ± 0.04
Ca	2.13 ± 0.14	2.04 ± 0.18	2.21 ± 0.23	2.09 ± 0.26
Cr	0.27 ± 0.05	0.40 ± 0.04	0.37 ± 0.02	0.36 ± 0.02
Mn	0.055 ± 0.007	0.068 ± 0.006	0.074 ± 0.004	0.076 ± 0.005
Fe	2.41 ± 0.10	2.46 ± 0.10	2.52 ± 0.08	2.41 ± 0.09
Ni	92.7 ± 1.9	92.7 ± 2.2	93.6 ± 1.5	94.0 ± 2.0

^a the information depth $d_{99\%}$ for element i that would yield 99% of the element intensity is given by the formula $d_{99\%}=4.6/\chi(E_0,E_i)\times\rho$, where ρ is the density of the sample and $\chi(E_0,E_i)=\mu(E_0)\csc(\phi_1)+\mu(E_i)\csc(\phi_2)$ is total mass-attenuation coefficient of the sample. $\mu(E_0)$ and $\mu(E_i)$ represent the mass attenuation coefficients of the sample at the primary E_0 and fluorescent radiation E_i (Pd L α or Pd K α line at 2.84 and 19.28 keV, respectively), ϕ_1 and ϕ_2 are the incidence and take-off angles, respectively.