1 Proof that Yau-Hausdorff distance is a metric

1.1 Lemma 1:

Let A and B be two sets of finite points in $\mathbb{R}^{d}, d(a, b)=|a-b|$ is the Euclidean distance. For $a \in A$, we define $d(a, B)=\min _{b \in B} d(a, b)$. Similarly, we define $d(b, A)=\min _{a \in A} d(b, a)$. Then define $d(A, B)=\max _{a \in A} d(a, B), d(B, A)=$ $\max _{b \in B} \mathrm{~d}(\mathrm{~b}, \mathrm{~A})$ and $h(A, B)=\max \{d(A, B), d(B, A)\}$. Then h is a metric.
Proof:

1. Obviously $h \geq 0$.

If $h(A, B)=0$, then $d(A, B)=d(B, A)=0 . \max _{a \in A} d(a, B)=0$, implies for each $a \in A d(a, B)=0$. We have $\min _{b \in B} d(a, b)=0$ for any $a \in A$. Because B is a finite set, we can find $b \in B$, s.t. $b=a$.

This gives us $A \subset B$, similarly we have $B \subset A$. Hence $A=B$.
On the other hand if $A=B$, we have $h(A, B)=0$ from definition, so $h(A, B)=0$ if and only if $A=B$.
2. $h(A, B)=\max \{d(A, B), d(B, A)\}=\max \{d(B, A), d(A, B)\}=h(B, A)$.
3. We take three sets finite point sets A, B, C in \mathbb{R}^{d} and show that $h(A, B) \leq$ $h(A, C)+h(C, B)$, i.e.
$\max \{d(A, B), d(B, A)\} \leq \max \{d(A, C), d(C, A)\}+\max \{d(C, B), d(B, C)\}$

First we show that

$$
\begin{equation*}
d(a, B) \leq d(a, C)+d(C, B) \tag{2}
\end{equation*}
$$

for each $a \in A$.

Assume

$$
\begin{array}{r}
d(a, C)=\min _{c \in C} d(a, c)=d\left(a, c_{0}\right), c_{0} \in C \\
d\left(c_{0}, B\right)=\min _{b \in B} d\left(c_{0}, b\right)=d\left(c_{0}, b_{0}\right), b_{0} \in B \tag{4}
\end{array}
$$

It follows that

$$
\begin{align*}
d(a, B) & \leq d\left(a, b_{0}\right) \tag{5}\\
& \leq d\left(a, c_{0}\right)+d\left(c_{0}, b_{0}\right) \tag{6}\\
& =d(a, C)+d\left(c_{0}, B\right) \tag{7}\\
& \leq d(a, C)+d(C, B) \tag{8}
\end{align*}
$$

and equation (2) holds. Hence

$$
\begin{align*}
d(a, B) & \leq d(a, C)+d(C, B) \tag{9}\\
& \leq d(A, C)+d(C, B) \tag{10}\\
& \leq \max \{d(A, C), d(C, A)\}+\max \{d(C, B), d(B, C)\} \tag{11}\\
& =h(A, C)+h(C, B) \tag{12}
\end{align*}
$$

for each fixed $a \in A$.
Take the maximum of the left hand of this inequality,

$$
\begin{equation*}
d(A, B)=\max _{a \in A} d(a, B) \leq h(A, C)+h(C, B) \tag{13}
\end{equation*}
$$

Similarly we can get

$$
\begin{gather*}
d(B, A) \leq h(A, C)+h(C, B) \tag{14}\\
h(A, B)=\max \{d(A, B), d(B, A)\} \leq h(A, C)+h(C, B) \tag{15}
\end{gather*}
$$

The triangle inequality holds.

We have proven that h is a metric.

1.2 Lemma 2:

Let A and B be two sets of finite points in \mathbb{R}^{d}. For a translation vector $t \in \mathbb{R}^{d}$, we define $A+t=\{a+t \mid a \in A\}$. For a rotation θ, we define A^{θ} to be the set A rotated around the origin by θ. Let $H^{d}(A, B)=\inf _{t, \theta} h\left(A^{\theta}+t, B\right)$, then H^{d} is a metric, and is called minimum d-dimensional Hausdorff metric.

Proof:
1.

$$
\begin{equation*}
H^{d}(A, B)=\inf _{t, \theta} h\left(A^{\theta}+t, B\right) \geq 0 \tag{16}
\end{equation*}
$$

If $H^{d}(A, B)=0$, then we can find t_{0} and θ_{0}, such that $h\left(A^{\theta_{0}}+t_{0}, B\right)=0$. From Lemma 1 we have $A^{\theta_{0}}+t_{0}=B$ in \mathbb{R}^{d}, so $A \xlongequal{\triangle} B$. (Here $A \xlongequal{\triangle} B$ means that A and B are of the same shape, i.e. we can find translation t and rotation θ, such that $A^{\theta}+t=B$).

On the other hand, if $A \xlongequal{\triangle} B$, then we can find t_{0} and θ_{0}, s.t. $A^{\theta_{0}}+t_{0}=$ B.

Then $h\left(A^{\theta_{0}}+t_{0}, B\right)=0$ and $H^{d}(A, B)=\inf _{t, \theta} h\left(A^{\theta}+t, B\right)=0$.
$H^{d}(A, B)=0$ if and only if $A \xlongequal{\triangle} B$.
2.

$$
\begin{align*}
& H^{d}(A, B) \tag{17}\\
= & \inf _{t, \theta} h\left(A^{\theta}+t, B\right) \tag{18}\\
= & \inf _{t, \theta} h\left(A,(B-t)^{-\theta}\right) \tag{19}\\
= & \inf _{t, \theta} h\left((B-t)^{-\theta}, A\right) \tag{20}\\
= & \inf _{t, \theta} h\left(B^{-\theta}-t, A\right) \tag{21}\\
= & \inf _{t^{\prime}, \theta^{\prime}} h\left(B^{\theta^{\prime}}+t^{\prime}, A\right) \tag{22}\\
= & H^{d}(B, A) \tag{23}
\end{align*}
$$

3. Take three finite point sets A, B, C in \mathbb{R}^{d} and show that $H^{d}(A, B) \leq$ $H^{d}(A, C)+H^{d}(B, C)$. This is equivalent to

$$
\begin{equation*}
\inf _{t, \theta} h\left(A^{\theta}+t, B\right) \leq \inf _{t, \theta} h\left(A^{\theta}+t, C\right)+\inf _{t, \theta} h\left(B^{\theta}+t, C\right) \tag{24}
\end{equation*}
$$

Since the rotation group is compact and we only need to consider the translation in a compact region, we can find $\theta_{1}, t_{1}, \theta_{2}, t_{2}$, s.t.

$$
\begin{align*}
& h\left(A^{\theta_{1}}+t_{1}, C\right)=\inf _{t, \theta} h\left(A^{\theta}+t, C\right) \tag{25}\\
& h\left(B^{\theta_{2}}+t_{2}, C\right)=\inf _{t, \theta} h\left(B^{\theta}+t, C\right) \tag{26}
\end{align*}
$$

That gives us

$$
\begin{align*}
& H^{d}(A, C)+H^{d}(B, C) \tag{27}\\
= & \inf _{t, \theta} h\left(A^{\theta}+t, C\right)+\inf _{t, \theta} h\left(B^{\theta}+t, C\right) \tag{28}\\
= & h\left(A^{\theta_{1}}+t_{1}, C\right)+h\left(B^{\theta_{2}}+t_{2}, C\right) \tag{29}\\
\geq & h\left(A^{\theta_{1}}+t_{1}, B^{\theta_{2}}+t_{2}\right) \tag{30}\\
= & h\left(A^{\theta_{1}}+t_{1}-t_{2}, B^{\theta_{2}}\right) \tag{31}\\
= & h\left(\left(A^{\theta_{1}}+t_{1}-t_{2}\right)^{-\theta_{2}}, B\right) \tag{32}\\
= & h\left(A^{\theta_{1}-\theta_{2}}+t_{1}-t_{2}, B\right) \tag{33}\\
\geq & \inf _{t, \theta} h\left(A^{\theta}+t, B\right) \tag{34}\\
= & H^{d}(A, B) \tag{35}
\end{align*}
$$

The triangle inequality holds.
We have proven that H^{d} is a metric.

1.3 Theorem:

Let A and B be two point sets of finite points in \mathbb{R}^{2}. For a rotation θ, we define $P_{x}\left(A^{\theta}\right)$ to be the x-axis projection of A^{θ}.

$$
\begin{array}{r}
D(A, B)=\max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right),\right. \\
\left.\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\} \tag{36}
\end{array}
$$

Here H^{1} is the minimum one-dimensional Hausdorff distance,

$$
\begin{equation*}
H^{1}(A, B)=\inf _{t \in \mathbb{R}} \max \left\{\max _{a \in A+t} \min _{b \in B}|a-b|, \max _{b \in B} \min _{a \in A+t}|b-a|\right\} \tag{37}
\end{equation*}
$$

then D is a metric.
Proof:
1.

$$
\begin{array}{r}
D(A, B)=\max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right),\right. \\
\left.\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\} \\
D(B, A)=\max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(B^{\theta}\right), P_{x}\left(A^{\varphi}\right)\right),\right. \tag{39}\\
\left.\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(B^{\theta}\right), P_{x}\left(A^{\varphi}\right)\right)\right\}
\end{array}
$$

Since $H^{1}(A, B)=H^{1}(B, A)$, we have

$$
\begin{align*}
& \sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)=\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(B^{\theta}\right), P_{x}\left(A^{\varphi}\right)\right) \tag{40}\\
& \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)=\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(B^{\theta}\right), P_{x}\left(A^{\varphi}\right)\right)
\end{align*}
$$

which gives us $\mathrm{D}(\mathrm{A}, \mathrm{B})=\mathrm{D}(\mathrm{B}, \mathrm{A})$.
2. We take three sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of finite points in \mathbb{R}^{2} and show that $D(A, B) \leq$ $D(A, C)+D(C, B)$. First we prove that

$$
\begin{equation*}
\inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(B^{\varphi}\right)\right) \leq D(A, C)+D(C, B) \tag{41}
\end{equation*}
$$

for each fixed θ_{0}. Assume α_{0} is a rotation, s.t.

$$
\begin{equation*}
H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(C^{\alpha_{0}}\right)\right)=\inf _{\alpha} H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(C^{\alpha}\right)\right) \tag{42}
\end{equation*}
$$

φ_{0} is a rotation, s.t.

$$
\begin{equation*}
H^{1}\left(P_{x}\left(C^{\alpha_{0}}\right), P_{x}\left(B^{\varphi_{0}}\right)\right)=\inf _{\varphi} H^{1}\left(P_{x}\left(C^{\alpha_{0}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{43}
\end{equation*}
$$

So

$$
\begin{align*}
& \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{44}\\
\leq & H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(B^{\varphi_{0}}\right)\right) \tag{45}\\
\leq & H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(C^{\alpha_{0}}\right)\right)+H^{1}\left(P_{x}\left(C^{\alpha_{0}}\right), P_{x}\left(B^{\varphi_{0}}\right)\right) \tag{46}\\
= & \inf _{\alpha} H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(C^{\alpha}\right)\right)+\inf _{\varphi} H^{1}\left(P_{x}\left(C^{\alpha_{0}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{47}\\
\leq & \sup _{\theta} \inf _{\alpha} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(C^{\alpha}\right)\right)+\sup _{\alpha} \inf _{\varphi} H^{1}\left(P_{x}\left(C^{\alpha}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{48}\\
\leq & D(A, C)+D(C, B) \tag{49}
\end{align*}
$$

for each fixed rotation θ_{0}.
We take the maximum of all rotation θ in the left hand, and we get

$$
\begin{equation*}
\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \leq D(A, C)+D(C, B) \tag{50}
\end{equation*}
$$

Similarly, we can get

$$
\begin{equation*}
\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \leq D(A, C)+D(C, B) \tag{51}
\end{equation*}
$$

So
$D(A, B)=\max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right), \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\}$

$$
\begin{equation*}
\leq D(A, C)+D(C, B) \tag{52}
\end{equation*}
$$

The triangle inequality holds.
3. Obviously $D(A, B) \geq 0$ for any two point sets A, B.

We need to prove that $A \xlongequal{\triangle} B$ if and only if $D(A, B)=0$.
If $A \xlongequal{\triangle} B$, then $D(A, B)=0$.
Conversely, if $D(A, B)=0$, we need to show that $A \xlongequal{\triangle} B$.

Assume that there are m points in set A and n points in set B. We assume that $m>n$.

We can find a rotation θ_{0}, s.t. the number of points in $P_{x}\left(A^{\theta_{0}}\right)$ has m different points, but the number of points in $P_{x}\left(B^{\varphi}\right)$ is no more than n , so

$$
\begin{align*}
& P_{x}\left(A^{\theta_{0}}\right) \neq P_{x}\left(B^{\varphi}\right) \tag{54}\\
\Longrightarrow & \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)>0 \tag{55}\\
\Longrightarrow & D(A, B)>0 \tag{56}
\end{align*}
$$

Contradiction! So we must have $m \leq n$. Similarly we can get $n \leq m$. So $m=n$. The number of points of the two sets must be the same.

We consider a new question. If we know all the x -axis projections of set A with different rotation θ, can we reconstruct set A in the x, y-plane? This question is equivalent to the original question because all the projection of set A and set B are the same if $D(A, B)=0$, and we are about to show that the answer of this new question is yes.

First we consider a simple situation. There are only three different points in set A. Without loss of generality we fix a point at the origin. Then we rotate the set A three times so that each time a line that connects two points of A parallels the x-axis. So we can know the distance of any two points in set A from the information of projections, then the shape of set A is fixed.

If there are n different points in set A , again we fix a point at the origin O . Similarly we can determine the shape of the triangle $\triangle O A_{1} A_{2}$ with three rotations.

For the next point A_{3}, we can know the distance between A_{3}, O, the distance between A_{3}, A_{1} and the distance between A_{3}, A_{2} by three rotations. So the location of A_{3} is fixed. The other points are fixed in the same way.

For each point, we need three other rotations. So with $3+3(n-3)=3 n-6$ rotations, the shape of A is fixed.

It means that we can reconstruct the set A in a plane from the information of $P_{x}\left(A^{\theta}\right)$ for all θ. If $D(A, B)=0$, the projections of A and B with all the rotations are the same. $A \xlongequal{\triangle} B$.

With symmetry, triangle inequality, non-negativity and identity of indiscernibles as shown above, we have proven that D is a metric. Q.E.D.

Remark: This theorem has a more general version. $D(A, B)$ defined in Euclidean space \mathbb{R}^{d} is a metric, for all $d \geq 2$.

Proof: Symmetry, triangle inequality an non-negativity can be proven the same way above. We only need to prove identity of indiscernibles.

Again, we only need to show that we can reconstruct set A up to rigid motion in \mathbb{R}^{d} with all the x -axis projections of A with different rotation θ. For $\mathrm{d}=2$, we have shown that $3 n-6$ rotations is enough to reconstruct A. There is a similar formula for arbitrary d . Once we reconstruct A in \mathbb{R}^{d} with all the x -axis projections of A with different rotation $\theta, D(A, B)=0$ gives us $A \xlongequal{\triangle} B$.

We have proven that D is a metric.

2 Proof that $H^{2}(A, B) \geq D(A, B)$

2.1 Lemma

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}^{2}, B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \subset \mathbb{R}^{2}$. Let

$$
\begin{array}{r}
d(A, B)=\max _{1 \leq i \leq n} \min _{1 \leq j \leq m} d\left(a_{i}, b_{j}\right) \\
d(B, A)=\max _{1 \leq j \leq m} \min _{1 \leq i \leq n} d\left(b_{j}, a_{i}\right) \\
h(A, B)=\max \{d(A, B), d(B, A)\} \tag{59}
\end{array}
$$

then

$$
\begin{equation*}
h\left(A^{\theta}, B^{\varphi}\right) \geq H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{60}
\end{equation*}
$$

for any rotation θ and φ. Here H^{1} is the minimum one-dimensional Hausdorff distance.

Proof: Assume $A^{\theta}=\left\{a_{1 \theta}, a_{2 \theta}, \ldots, a_{n \theta}\right\}, B^{\varphi}=\left\{b_{1 \varphi}, b_{2 \varphi}, \ldots, b_{m \varphi}\right\}, P_{x}\left(A^{\theta}\right)=$ $\left\{x_{1 \theta}, x_{2 \theta}, \ldots, x_{n \theta}\right\}, P_{x}\left(B^{\varphi}\right)=\left\{y_{1 \varphi}, y_{2 \varphi}, \ldots, y_{m \varphi}\right\} . \quad x_{i \theta}$ is the x-projection of $a_{i \theta}, 1 \leq i \leq n$ and $y_{j \varphi}$ is the x-projection of $b_{j \varphi}, 1 \leq j \leq m$.
$d\left(a_{i \theta}, b_{j \varphi}\right) \geq d\left(x_{i \theta}, y_{j \varphi}\right)$ for any i, j. Take the minimum of $j=1,2, \ldots, m$ in this inequality, and we get

$$
\begin{equation*}
\min _{1 \leq j \leq m} d\left(a_{i \theta}, b_{j \varphi}\right) \geq \min _{1 \leq j \leq m} d\left(x_{i \theta}, y_{j \varphi}\right) \tag{61}
\end{equation*}
$$

Take the max of $i=1,2, \ldots, n$ in this inequality, and we get

$$
\begin{equation*}
\max _{1 \leq i \leq n} \min _{1 \leq j \leq m} d\left(a_{i \theta}, b_{j \varphi}\right) \geq \max _{1 \leq i \leq n} \min _{1 \leq j \leq m} d\left(x_{i \theta}, y_{j \varphi}\right) \tag{62}
\end{equation*}
$$

This means

$$
\begin{equation*}
d\left(A^{\theta}, B^{\varphi}\right) \geq d\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{63}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
d\left(B^{\varphi}, A^{\theta}\right) \geq d\left(P_{x}\left(B^{\varphi}\right), P_{x}\left(A^{\theta}\right)\right) \tag{64}
\end{equation*}
$$

$$
\begin{align*}
& h\left(A^{\theta}, B^{\varphi}\right) \tag{65}\\
= & \max \left\{d\left(A^{\theta}, B^{\varphi}\right), d\left(B^{\varphi}, A^{\theta}\right)\right\} \tag{66}\\
\geq & \max \left\{d\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right), d\left(P_{x}\left(B^{\varphi}\right), P_{x}\left(A^{\theta}\right)\right)\right\} \tag{67}\\
= & h\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{68}\\
\geq & \inf _{t \in \mathbb{R}} h\left(P_{x}\left(A^{\theta}\right)+t, P_{x}\left(B^{\varphi}\right)\right) \tag{69}\\
= & H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{70}
\end{align*}
$$

Q.E.D.

2.2 Theorem

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subset \mathbb{R}^{2}, B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\} \subset \mathbb{R}^{2} . H^{2}(A, B)$ is the minimum two-dimensional Hausdorff distance of A and B, i.e.
$H^{2}(A, B)=\inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A^{\theta}+t, B\right)$
$D(A, B)=\max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right), \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\}$. Then $H^{2}(A, B) \geq D(A, B)$.
Proof: Assume

$$
\begin{align*}
& d(A, B)=\max _{1 \leq i \leq n} \min _{1 \leq j \leq m} d\left(a_{i}, b_{j}\right) \tag{71}\\
& d(B, A)=\max _{1 \leq j \leq m} \min _{1 \leq i \leq n} d\left(b_{j}, a_{i}\right) \tag{72}\\
& h(A, B)=\max \{d(A, B), d(B, A)\} \tag{73}\\
& H^{2}(A, B)=\inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A^{\theta}+t, B\right) \tag{74}
\end{align*}
$$

First we prove that $h\left(A^{\theta_{1}}+t_{1}, B\right) \geq D(A, B)$ for any fixed θ_{1} and t_{1}. We only need to show that $h\left(A^{\theta_{1}}+t_{1}, B\right) \geq \sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)$.
Fix $\theta=\theta_{2}$,

$$
\begin{align*}
& h\left(A^{\theta_{1}}+t_{1}, B\right) \tag{75}\\
= & h\left(A^{\theta_{1}}, B-t_{1}\right) \tag{76}\\
= & h\left(A,\left(B-t_{1}\right)^{-\theta_{1}}\right) \tag{77}\\
= & h\left(A^{\theta_{2}},\left(B-t_{1}\right)^{-\theta_{1}+\theta_{2}}\right) \tag{78}\\
= & h\left(A^{\theta_{2}}, B^{-\theta_{1}+\theta_{2}}-t_{1}\right) \tag{79}\\
\geq & H^{1}\left(P_{x}\left(A^{\theta_{2}}\right), P_{x}\left(B^{-\theta_{1}+\theta_{2}}-t_{1}\right)\right) \tag{80}\\
= & H^{1}\left(P_{x}\left(A^{\theta_{2}}\right), P_{x}\left(B^{-\theta_{1}+\theta_{2}}\right)\right) \tag{81}\\
\geq & \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta_{2}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{82}
\end{align*}
$$

Equation (80) above is from the lemma. That gives us

$$
\begin{equation*}
h\left(A^{\theta_{1}}+t_{1}, B\right) \geq \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta_{2}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{83}
\end{equation*}
$$

for any fixed θ_{2}, which means

$$
\begin{equation*}
h\left(A^{\theta_{1}}+t_{1}, B\right) \geq \sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{84}
\end{equation*}
$$

Similarly we can get

$$
\begin{equation*}
h\left(A^{\theta_{1}}+t_{1}, B\right) \geq \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{85}
\end{equation*}
$$

Equations (84) and (85) give us

$$
\begin{align*}
& h\left(A^{\theta_{1}}+t_{1}, B\right) \tag{86}\\
\geq & \max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right), \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\} \tag{87}\\
= & D(A, B) \tag{88}
\end{align*}
$$

for any θ_{1} and t_{1}. Take minimum of the left hand, and we have

$$
\begin{align*}
& \inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A^{\theta}+t, B\right) \geq D(A, B) \tag{89}\\
\Longrightarrow & H^{2}(A, B) \geq D(A, B) \tag{90}
\end{align*}
$$

Q.E.D.

3 A simple example

Let $A=\{(0,0),(0,1),(1,0),(1,1)\} \subset \mathbb{R}^{2}, B=\{(0,0),(0,1),(1,1)\} \subset \mathbb{R}^{2}$. We will show that $H^{2}(A, B)=\frac{1}{2}>\frac{\sqrt{5}}{10}=D(A, B)$

3.1 Compute $H^{2}(A, B)$

First we prove that $h\left(A, B^{\theta}+t\right) \geq \frac{1}{2}$ for all fixed θ and t.
Draw 4 disks of radius $\frac{1}{2}$ centered at $O(0,0), M(0,1), P(1,0), N(1,1)$. Because there are three points in $B^{\theta}+t$, there must be a disk that does not contain any point of $B^{\theta}+t$. We denote the four disks $C_{O}, C_{M}, C_{N}, C_{P}$ and assume that there is no point of $B^{\theta}+t$ in C_{O}.
So

$$
\begin{align*}
& \min _{b_{j} \in B^{\theta}+t} d\left(O, b_{j}\right) \geq \frac{1}{2} \tag{91}\\
\Longrightarrow & d\left(O, B^{\theta}+t\right) \geq \frac{1}{2} \tag{92}
\end{align*}
$$

which gives us

$$
\begin{array}{r}
d\left(A, B^{\theta}+t\right)=\max _{a_{i} \in A} d\left(a_{i}, B^{\theta}+t\right) \geq \frac{1}{2} \\
h\left(A, B^{\theta}+t\right)=\max \left\{d\left(A, B^{\theta}+t\right), d\left(B^{\theta}+t, A\right)\right\} \geq \frac{1}{2} \tag{94}
\end{array}
$$

Take minimum of the left hand of equation (94), we have

$$
\begin{equation*}
\inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A, B^{\theta}+t\right) \geq \frac{1}{2} \tag{95}
\end{equation*}
$$

We then show that $\inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A, B^{\theta}+t\right)=\frac{1}{2}$.
Take a rigid motion from B to $B^{\prime}=\left\{\left(\frac{1}{2}, 0\right),\left(\frac{3}{2}, 0\right),\left(\frac{1}{2}, 1\right)\right\}$.

$$
\begin{align*}
& d\left(A, B^{\prime}\right)=\max _{a_{i} \in A} \min _{b_{j} \in B^{\prime}} d\left(a_{i}, b_{j}\right)=\frac{1}{2} \tag{96}\\
& d\left(B^{\prime}, A\right)=\max _{b_{j} \in B^{\prime}} \min _{a_{i} \in A} d\left(b_{j}, a_{i}\right)=\frac{1}{2} \tag{97}\\
& h\left(A, B^{\prime}\right)=\max \left\{d\left(A, B^{\prime}\right), d\left(B^{\prime}, A\right)\right\}=\frac{1}{2} \tag{98}
\end{align*}
$$

So

$$
\begin{align*}
& H^{2}(A, B) \tag{99}\\
&= H^{2}(B, A) \tag{100}\\
&= \inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(B^{\theta}+t, A\right) \tag{101}\\
&=\inf _{t \in \mathbb{R}^{2}} \inf _{\theta} h\left(A, B^{\theta}+t\right) \tag{102}\\
&= \frac{1}{2} \tag{103}
\end{align*}
$$

3.2 Compute $\mathrm{D}(\mathrm{A}, \mathrm{B})$

First we compute $\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)$.

Without loss of generality we may assume $0 \leq \theta \leq \frac{\pi}{2}$.
Let the projection of $\mathrm{M}, \mathrm{N}, \mathrm{P}$ after rotation θ be $\mathrm{M}^{\prime}, \mathrm{N}^{\prime}, \mathrm{P}^{\prime}$ (Fig.12).
Let $a=O M^{\prime}=\sin \theta, b=M^{\prime} P^{\prime}$, then $P^{\prime} N^{\prime}=\sin \theta=a$.
Next we prove that $\inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)=$ $\frac{1}{2} \min \{a, b\}$.
Figure 12: Diagram for computing the Yau-Hausdorff distance

Assume $a \leq b$, draw four disks of radius $\frac{1}{2} a$ centered at $O, M^{\prime}, N^{\prime}, P^{\prime}$, denoted as $C_{O}, C_{M^{\prime}}, C_{N^{\prime}}, C_{P^{\prime}}$.
Because there are no more than three points in the projection of B^{φ}, there must be a disk that does not contain any point of $P_{x}\left(B^{\varphi}\right)$. So $H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \geq$ $\frac{1}{2} a$, for any rotation φ.
We then take a rigid motion φ_{0}, s.t. $P_{x}\left(B^{\varphi_{0}}\right)=\left\{O, M^{\prime}, N^{\prime}\right\}$.
Take $t=-\frac{1}{2} a$, and translate $P_{x}\left(B^{\varphi_{0}}\right)$ by t .
Assume $P_{x}\left(B^{\varphi_{0}}\right)-\frac{1}{2} a=\left\{O^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}\right\}$. We can see that the Hausdorff distance
between $P_{x}\left(A^{\theta}\right)$ and $P_{x}\left(B^{\varphi_{0}}\right)-\frac{1}{2} a$ is $\frac{1}{2} a$. So

$$
\begin{gather*}
H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi_{0}}\right)\right)=\frac{1}{2} a \tag{104}\\
\inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)=\frac{1}{2} a=\frac{1}{2} \min \{a, b\} \tag{105}
\end{gather*}
$$

Assume $b \leq a$, we can prove equation (105) in the same way.
Now we compute $\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)$, it is equal to $\frac{1}{2} \sup _{\theta} \min \{a, b\}$. We can see that $\min \{a, b\}$ achieves the maximum for θ if and only if $a=b$, because if one of the values of $\{a, b\}$ increases, the other will decrease. Assume that the rotation of A is θ_{0}, s.t. $\mathrm{a}=\mathrm{b}$.

So

$$
\begin{gather*}
a=O M \sin \theta_{0}=\sin \theta_{0}, \angle O M M^{\prime}=\theta_{0} \tag{106}\\
\angle M^{\prime} M P=\angle O M P-\angle O M M^{\prime}=\frac{\pi}{4}-\theta_{0} \tag{107}
\end{gather*}
$$

$$
\begin{equation*}
b=M P \sin \angle M^{\prime} M P \tag{108}
\end{equation*}
$$

$$
\begin{equation*}
=\sqrt{2} \sin \left(\frac{\pi}{4}-\theta_{0}\right) \tag{109}
\end{equation*}
$$

$$
\begin{equation*}
=\sqrt{2}\left(\frac{\sqrt{2}}{2} \cos \theta_{0}-\frac{\sqrt{2}}{2} \sin \theta_{0}\right) \tag{110}
\end{equation*}
$$

$$
\begin{equation*}
=\cos \theta_{0}-\sin \theta_{0} \tag{111}
\end{equation*}
$$

$$
\begin{equation*}
a=b \tag{112}
\end{equation*}
$$

$$
\begin{equation*}
\Longrightarrow \sin \theta_{0}=\cos \theta_{0}-\sin \theta_{0} \tag{113}
\end{equation*}
$$

$$
\begin{equation*}
\Longrightarrow \cos \theta_{0}=2 \sin \theta_{0} \tag{114}
\end{equation*}
$$

$$
\begin{equation*}
\Longrightarrow \sin \theta_{0}=\frac{\sqrt{5}}{5}, \cos \theta_{0}=\frac{2 \sqrt{5}}{5} \tag{115}
\end{equation*}
$$

So $a=b=\sin \theta_{0}=\frac{\sqrt{5}}{5}$.

$$
\begin{align*}
& \sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{116}\\
= & \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta_{0}}\right), P_{x}\left(B^{\varphi}\right)\right) \tag{117}\\
= & \frac{1}{2} \min \left\{\frac{\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\right\} \tag{118}\\
= & \frac{\sqrt{5}}{10} \tag{119}
\end{align*}
$$

Similarly we can prove that

$$
\begin{equation*}
\sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)<\frac{\sqrt{5}}{10} \tag{120}
\end{equation*}
$$

$$
\begin{align*}
& D(A, B) \tag{121}\\
= & \max \left\{\sup _{\theta} \inf _{\varphi} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right), \sup _{\varphi} \inf _{\theta} H^{1}\left(P_{x}\left(A^{\theta}\right), P_{x}\left(B^{\varphi}\right)\right)\right\} \tag{122}\\
= & \frac{\sqrt{5}}{10} \tag{123}
\end{align*}
$$

