
1 Proof that Yau-Hausdorff distance is a metric

1.1 Lemma 1:

Let A and B be two sets of finite points in Rd, d(a, b) = |a− b| is the Euclidean

distance. For a ∈ A, we define d(a,B) = minb∈B d(a, b). Similarly, we define

d(b, A) = mina∈A d(b, a). Then define d(A,B) = maxa∈A d(a,B), d(B,A) =

maxb∈B d(b,A) and h(A,B) = max{d(A,B), d(B,A)}. Then h is a metric.

Proof:

1. Obviously h ≥ 0.

If h(A,B) = 0, then d(A,B) = d(B,A) = 0. maxa∈A d(a,B) = 0, implies

for each a ∈ A d(a,B)=0. We have minb∈B d(a, b) = 0 for any a ∈ A.

Because B is a finite set, we can find b ∈ B, s.t. b = a.

This gives us A ⊂ B, similarly we have B ⊂ A. Hence A = B.

On the other hand if A = B, we have h(A,B) = 0 from definition, so

h(A,B) = 0 if and only if A = B.

2. h(A,B) = max{d(A,B), d(B,A)} = max{d(B,A), d(A,B)} = h(B,A).

3. We take three sets finite point sets A,B,C in Rd and show that h(A,B) ≤

h(A,C) + h(C,B), i.e.

max{d(A,B), d(B,A)} ≤ max{d(A,C), d(C,A)}+max{d(C,B), d(B,C)}

(1)

First we show that

d(a,B) ≤ d(a,C) + d(C,B) (2)

for each a ∈ A.
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Assume

d(a,C) = min
c∈C

d(a, c) = d(a, c0), c0 ∈ C (3)

d(c0, B) = min
b∈B

d(c0, b) = d(c0, b0), b0 ∈ B (4)

It follows that

d(a,B) ≤d(a, b0) (5)

≤d(a, c0) + d(c0, b0) (6)

=d(a,C) + d(c0, B) (7)

≤d(a,C) + d(C,B) (8)

and equation (2) holds. Hence

d(a,B) ≤d(a,C) + d(C,B) (9)

≤d(A,C) + d(C,B) (10)

≤max{d(A,C), d(C,A)}+ max{d(C,B), d(B,C)} (11)

=h(A,C) + h(C,B) (12)

for each fixed a ∈ A.

Take the maximum of the left hand of this inequality,

d(A,B) = max
a∈A

d(a,B) ≤ h(A,C) + h(C,B) (13)

Similarly we can get

d(B,A) ≤ h(A,C) + h(C,B) (14)

h(A,B) = max{d(A,B), d(B,A)} ≤ h(A,C) + h(C,B) (15)

The triangle inequality holds.
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We have proven that h is a metric.

1.2 Lemma 2:

Let A and B be two sets of finite points in Rd. For a translation vector t ∈ Rd,

we define A+ t = {a+ t|a ∈ A}. For a rotation θ, we define Aθ to be the set A

rotated around the origin by θ. Let Hd(A,B) = inft,θ h(Aθ + t, B), then Hd is

a metric, and is called minimum d-dimensional Hausdorff metric.

Proof:

1.

Hd(A,B) = inf
t,θ
h(Aθ + t, B) ≥ 0 (16)

If Hd(A,B) = 0, then we can find t0 and θ0, such that h(Aθ0 + t0, B) = 0.

From Lemma 1 we have Aθ0 + t0 = B in Rd, so A
4

=== B. (Here A
4

=== B

means that A and B are of the same shape, i.e. we can find translation t

and rotation θ, such that Aθ + t = B).

On the other hand, if A
4

=== B, then we can find t0 and θ0, s.t. Aθ0 + t0 =

B.

Then h(Aθ0 + t0, B) = 0 and Hd(A,B) = inft,θ h(Aθ + t, B) = 0.

Hd(A,B) = 0 if and only if A
4

=== B.
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2.

Hd(A,B) (17)

= inf
t,θ
h(Aθ + t, B) (18)

= inf
t,θ
h(A, (B − t)−θ) (19)

= inf
t,θ
h((B − t)−θ, A) (20)

= inf
t,θ
h(B−θ − t, A) (21)

= inf
t′,θ′

h(Bθ
′
+ t′, A) (22)

=Hd(B,A) (23)

3. Take three finite point sets A,B,C in Rd and show that Hd(A,B) ≤

Hd(A,C) +Hd(B,C). This is equivalent to

inf
t,θ
h(Aθ + t, B) ≤ inf

t,θ
h(Aθ + t, C) + inf

t,θ
h(Bθ + t, C) (24)

Since the rotation group is compact and we only need to consider the

translation in a compact region, we can find θ1, t1, θ2, t2, s.t.

h(Aθ1 + t1, C) = inf
t,θ
h(Aθ + t, C) (25)

h(Bθ2 + t2, C) = inf
t,θ
h(Bθ + t, C) (26)
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That gives us

Hd(A,C) +Hd(B,C) (27)

= inf
t,θ
h(Aθ + t, C) + inf

t,θ
h(Bθ + t, C) (28)

=h(Aθ1 + t1, C) + h(Bθ2 + t2, C) (29)

≥h(Aθ1 + t1, B
θ2 + t2) (30)

=h(Aθ1 + t1 − t2, Bθ2) (31)

=h((Aθ1 + t1 − t2)−θ2 , B) (32)

=h(Aθ1−θ2 + t1 − t2, B) (33)

≥ inf
t,θ
h(Aθ + t, B) (34)

=Hd(A,B) (35)

The triangle inequality holds.

We have proven that Hd is a metric.

1.3 Theorem:

Let A and B be two point sets of finite points in R2. For a rotation θ, we define

Px(Aθ) to be the x-axis projection of Aθ.

D(A,B) = max{sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)),

sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ))}

(36)

Here H1 is the minimum one-dimensional Hausdorff distance,

H1(A,B) = inf
t∈R

max{ max
a∈A+t

min
b∈B
|a− b|,max

b∈B
min
a∈A+t

|b− a|} (37)

then D is a metric.

Proof:
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1.

D(A,B) = max{sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)),

sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ))}

(38)

D(B,A) = max{sup
θ

inf
ϕ
H1(Px(Bθ), Px(Aϕ)),

sup
ϕ

inf
θ
H1(Px(Bθ), Px(Aϕ))}

(39)

Since H1(A,B) = H1(B,A), we have

sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)) = sup

ϕ
inf
θ
H1(Px(Bθ), Px(Aϕ))

sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ)) = sup

θ
inf
ϕ
H1(Px(Bθ), Px(Aϕ))

(40)

which gives us D(A,B)=D(B,A).

2. We take three sets A,B,C of finite points in R2 and show that D(A,B) ≤

D(A,C) +D(C,B). First we prove that

inf
ϕ
H1(Px(Aθ0), Px(Bϕ)) ≤ D(A,C) +D(C,B) (41)

for each fixed θ0. Assume α0 is a rotation, s.t.

H1(Px(Aθ0), Px(Cα0)) = inf
α
H1(Px(Aθ0), Px(Cα)) (42)

ϕ0 is a rotation, s.t.

H1(Px(Cα0), Px(Bϕ0)) = inf
ϕ
H1(Px(Cα0), Px(Bϕ)) (43)
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So

inf
ϕ
H1(Px(Aθ0), Px(Bϕ)) (44)

≤H1(Px(Aθ0), Px(Bϕ0)) (45)

≤H1(Px(Aθ0), Px(Cα0)) +H1(Px(Cα0), Px(Bϕ0)) (46)

= inf
α
H1(Px(Aθ0), Px(Cα)) + inf

ϕ
H1(Px(Cα0), Px(Bϕ)) (47)

≤ sup
θ

inf
α
H1(Px(Aθ), Px(Cα)) + sup

α
inf
ϕ
H1(Px(Cα), Px(Bϕ)) (48)

≤D(A,C) +D(C,B) (49)

for each fixed rotation θ0.

We take the maximum of all rotation θ in the left hand, and we get

sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)) ≤ D(A,C) +D(C,B) (50)

Similarly, we can get

sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ)) ≤ D(A,C) +D(C,B) (51)

So

D(A,B) = max{sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)), sup

ϕ
inf
θ
H1(Px(Aθ), Px(Bϕ))}

(52)

≤ D(A,C) +D(C,B) (53)

The triangle inequality holds.

3. Obviously D(A,B) ≥ 0 for any two point sets A,B.

We need to prove that A
4

=== B if and only if D(A,B) = 0.

If A
4

=== B, then D(A,B) = 0.

Conversely, if D(A,B) = 0, we need to show that A
4

=== B.
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Assume that there are m points in set A and n points in set B. We assume

that m > n.

We can find a rotation θ0, s.t. the number of points in Px(Aθ0) has m

different points, but the number of points in Px(Bϕ) is no more than n,

so

Px(Aθ0) 6= Px(Bϕ) (54)

=⇒ inf
ϕ
H1(Px(Aθ), Px(Bϕ)) > 0 (55)

=⇒D(A,B) > 0 (56)

Contradiction! So we must have m ≤ n. Similarly we can get n ≤ m. So

m = n. The number of points of the two sets must be the same.

We consider a new question. If we know all the x-axis projections of set A

with different rotation θ, can we reconstruct set A in the x,y-plane? This

question is equivalent to the original question because all the projection

of set A and set B are the same if D(A,B) = 0, and we are about to show

that the answer of this new question is yes.

First we consider a simple situation. There are only three different points

in set A. Without loss of generality we fix a point at the origin. Then we

rotate the set A three times so that each time a line that connects two

points of A parallels the x-axis. So we can know the distance of any two

points in set A from the information of projections, then the shape of set

A is fixed.

If there are n different points in set A, again we fix a point at the origin O.

Similarly we can determine the shape of the triangle 4OA1A2 with three

rotations.

For the next point A3, we can know the distance between A3,O, the dis-

tance between A3,A1 and the distance between A3,A2 by three rotations.

So the location of A3 is fixed. The other points are fixed in the same way.
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For each point, we need three other rotations. So with 3+3(n−3) = 3n−6

rotations, the shape of A is fixed.

It means that we can reconstruct the set A in a plane from the information

of Px(Aθ) for all θ. If D(A,B) = 0, the projections of A and B with all

the rotations are the same. A
4

=== B.

With symmetry, triangle inequality, non-negativity and identity of indiscernibles

as shown above, we have proven that D is a metric. Q.E.D.

Remark: This theorem has a more general version. D(A,B) defined in Eu-

clidean space Rd is a metric, for all d ≥ 2.

Proof: Symmetry, triangle inequality an non-negativity can be proven the same

way above. We only need to prove identity of indiscernibles.

Again, we only need to show that we can reconstruct set A up to rigid motion

in Rd with all the x-axis projections of A with different rotation θ. For d=2,

we have shown that 3n − 6 rotations is enough to reconstruct A. There is a

similar formula for arbitrary d. Once we reconstruct A in Rd with all the x-axis

projections of A with different rotation θ, D(A,B) = 0 gives us A
4

=== B.

We have proven that D is a metric.

2 Proof that H2(A,B) ≥ D(A,B)

2.1 Lemma

Let A = {a1, a2, ..., an} ⊂ R2, B = {b1, b2, ..., bm} ⊂ R2. Let

d(A,B) = max
1≤i≤n

min
1≤j≤m

d(ai, bj) (57)

d(B,A) = max
1≤j≤m

min
1≤i≤n

d(bj , ai) (58)

h(A,B) = max{d(A,B), d(B,A)} (59)
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then

h(Aθ, Bϕ) ≥ H1(Px(Aθ), Px(Bϕ)) (60)

for any rotation θ and ϕ. Here H1 is the minimum one-dimensional Hausdorff

distance.

Proof: Assume Aθ = {a1θ, a2θ, ..., anθ}, Bϕ = {b1ϕ, b2ϕ, ..., bmϕ}, Px(Aθ) =

{x1θ, x2θ, ..., xnθ}, Px(Bϕ) = {y1ϕ, y2ϕ, ..., ymϕ}. xiθ is the x-projection of

aiθ, 1 ≤ i ≤ n and yjϕ is the x-projection of bjϕ, 1 ≤ j ≤ m.

d(aiθ, bjϕ) ≥ d(xiθ, yjϕ) for any i,j. Take the minimum of j = 1, 2, ...,m in this

inequality, and we get

min
1≤j≤m

d(aiθ, bjϕ) ≥ min
1≤j≤m

d(xiθ, yjϕ) (61)

Take the max of i = 1, 2, ..., n in this inequality, and we get

max
1≤i≤n

min
1≤j≤m

d(aiθ, bjϕ) ≥ max
1≤i≤n

min
1≤j≤m

d(xiθ, yjϕ) (62)

This means

d(Aθ, Bϕ) ≥ d(Px(Aθ), Px(Bϕ)) (63)

Similarly we have

d(Bϕ, Aθ) ≥ d(Px(Bϕ), Px(Aθ)) (64)

h(Aθ, Bϕ) (65)

= max{d(Aθ, Bϕ), d(Bϕ, Aθ)} (66)

≥max{d(Px(Aθ), Px(Bϕ)), d(Px(Bϕ), Px(Aθ))} (67)

=h(Px(Aθ), Px(Bϕ)) (68)

≥ inf
t∈R

h(Px(Aθ) + t, Px(Bϕ)) (69)

=H1(Px(Aθ), Px(Bϕ)) (70)

Q.E.D.
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2.2 Theorem

Let A = {a1, a2, ..., an} ⊂ R2, B = {b1, b2, ..., bm} ⊂ R2. H2(A,B) is the mini-

mum two-dimensional Hausdorff distance of A and B, i.e.

H2(A,B) = inft∈R2 infθ h(Aθ + t, B)

D(A,B) = max{supθ infϕH
1(Px(Aθ), Px(Bϕ)), supϕ infθH

1(Px(Aθ), Px(Bϕ))}.

Then H2(A,B) ≥ D(A,B).

Proof: Assume

d(A,B) = max
1≤i≤n

min
1≤j≤m

d(ai, bj) (71)

d(B,A) = max
1≤j≤m

min
1≤i≤n

d(bj , ai) (72)

h(A,B) = max{d(A,B), d(B,A)} (73)

H2(A,B) = inf
t∈R2

inf
θ
h(Aθ + t, B) (74)

First we prove that h(Aθ1 + t1, B) ≥ D(A,B) for any fixed θ1 and t1. We only

need to show that h(Aθ1 + t1, B) ≥ supθ infϕH
1(Px(Aθ), Px(Bϕ)).

Fix θ = θ2,

h(Aθ1 + t1, B) (75)

=h(Aθ1 , B − t1) (76)

=h(A, (B − t1)−θ1) (77)

=h(Aθ2 , (B − t1)−θ1+θ2) (78)

=h(Aθ2 , B−θ1+θ2 − t1) (79)

≥H1(Px(Aθ2), Px(B−θ1+θ2 − t1)) (80)

=H1(Px(Aθ2), Px(B−θ1+θ2)) (81)

≥ inf
ϕ
H1(Px(Aθ2), Px(Bϕ)) (82)
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Equation (80) above is from the lemma. That gives us

h(Aθ1 + t1, B) ≥ inf
ϕ
H1(Px(Aθ2), Px(Bϕ)) (83)

for any fixed θ2, which means

h(Aθ1 + t1, B) ≥ sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)) (84)

Similarly we can get

h(Aθ1 + t1, B) ≥ sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ)) (85)

Equations (84) and (85) give us

h(Aθ1 + t1, B) (86)

≥max{sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)), sup

ϕ
inf
θ
H1(Px(Aθ), Px(Bϕ))} (87)

=D(A,B) (88)

for any θ1 and t1. Take minimum of the left hand, and we have

inf
t∈R2

inf
θ
h(Aθ + t, B) ≥ D(A,B) (89)

=⇒H2(A,B) ≥ D(A,B) (90)

Q.E.D.

3 A simple example

Let A = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ R2,B = {(0, 0), (0, 1), (1, 1)} ⊂ R2. We

will show that H2(A,B) = 1
2 >

√
5

10 = D(A,B)
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3.1 Compute H2(A,B)

First we prove that h(A,Bθ + t) ≥ 1
2 for all fixed θ and t.

Draw 4 disks of radius 1
2 centered at O(0, 0),M(0, 1), P (1, 0), N(1, 1). Because

there are three points in Bθ + t, there must be a disk that does not contain any

point of Bθ + t. We denote the four disks CO, CM , CN , CP and assume that

there is no point of Bθ + t in CO.

So

min
bj∈Bθ+t

d(O, bj) ≥
1

2
(91)

=⇒d(O,Bθ + t) ≥ 1

2
(92)

which gives us

d(A,Bθ + t) = max
ai∈A

d(ai, B
θ + t) ≥ 1

2
(93)

h(A,Bθ + t) = max{d(A,Bθ + t), d(Bθ + t, A)} ≥ 1

2
(94)

Take minimum of the left hand of equation (94), we have

inf
t∈R2

inf
θ
h(A,Bθ + t) ≥ 1

2
(95)

We then show that inft∈R2 infθ h(A,Bθ + t) = 1
2 .

Take a rigid motion from B to B′ = {( 1
2 , 0), ( 3

2 , 0), ( 1
2 , 1)}.

d(A,B′) = max
ai∈A

min
bj∈B′

d(ai, bj) =
1

2
(96)

d(B′, A) = max
bj∈B′

min
ai∈A

d(bj , ai) =
1

2
(97)

h(A,B′) = max{d(A,B′), d(B′, A)} =
1

2
(98)
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So

H2(A,B) (99)

=H2(B,A) (100)

= inf
t∈R2

inf
θ
h(Bθ + t, A) (101)

= inf
t∈R2

inf
θ
h(A,Bθ + t) (102)

=
1

2
(103)

3.2 Compute D(A,B)

Figure 12: Diagram for comput-

ing the Yau-Hausdorff distance

First we compute supθ infϕH
1(Px(Aθ), Px(Bϕ)).

Without loss of generality we may assume

0 ≤ θ ≤ π
2 .

Let the projection of M,N,P after rotation θ

be M’,N’,P’ (Fig.12).

Let a = OM ′ = sin θ, b = M ′P ′, then

P ′N ′ = sin θ = a.

Next we prove that infϕH
1(Px(Aθ), Px(Bϕ)) =

1
2 min{a, b}.

Assume a ≤ b, draw four disks of radius

1
2a centered at O,M ′, N ′, P ′, denoted as

CO, CM ′ , CN ′ , CP ′ .

Because there are no more than three points in the projection of Bϕ, there must

be a disk that does not contain any point of Px(Bϕ). So H1(Px(Aθ), Px(Bϕ)) ≥
1
2a, for any rotation ϕ.

We then take a rigid motion ϕ0, s.t. Px(Bϕ0) = {O,M ′, N ′}.

Take t = − 1
2a, and translate Px(Bϕ0) by t.

Assume Px(Bϕ0)− 1
2a = {O′′,M ′′, N ′′}. We can see that the Hausdorff distance
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between Px(Aθ) and Px(Bϕ0)− 1
2a is 1

2a. So

H1(Px(Aθ), Px(Bϕ0)) =
1

2
a (104)

inf
ϕ
H1(Px(Aθ), Px(Bϕ)) =

1

2
a =

1

2
min{a, b} (105)

Assume b ≤ a, we can prove equation (105) in the same way.

Now we compute supθ infϕH
1(Px(Aθ), Px(Bϕ)), it is equal to 1

2 supθ min{a, b}.

We can see that min{a, b} achieves the maximum for θ if and only if a = b,

because if one of the values of {a, b} increases, the other will decrease. Assume

that the rotation of A is θ0, s.t. a=b.

So

a = OM sin θ0 = sin θ0,∠OMM ′ = θ0 (106)

∠M ′MP = ∠OMP − ∠OMM ′ =
π

4
− θ0 (107)

b = MP sin∠M ′MP (108)

=
√

2 sin(
π

4
− θ0) (109)

=
√

2(

√
2

2
cos θ0 −

√
2

2
sin θ0) (110)

= cos θ0 − sin θ0 (111)

a = b (112)

=⇒ sin θ0 = cos θ0 − sin θ0 (113)

=⇒ cos θ0 = 2 sin θ0 (114)

=⇒ sin θ0 =

√
5

5
, cos θ0 =

2
√

5

5
(115)
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So a = b = sin θ0 =
√
5
5 .

sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)) (116)

= inf
ϕ
H1(Px(Aθ0), Px(Bϕ)) (117)

=
1

2
min{

√
5

5
,

√
5

5
} (118)

=

√
5

10
(119)

Similarly we can prove that

sup
ϕ

inf
θ
H1(Px(Aθ), Px(Bϕ)) <

√
5

10
(120)

D(A,B) (121)

= max{sup
θ

inf
ϕ
H1(Px(Aθ), Px(Bϕ)), sup

ϕ
inf
θ
H1(Px(Aθ), Px(Bϕ))} (122)

=

√
5

10
(123)
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