
Theoretical property of the null distribution of LRT

Here we show, under the null distribution, that the proportion of zero part in the LRT statistic

could greatly deviate from the asymptotic result D0.5,1, see Theorem 1 (constant N) and Theorem

2 (non-constant N) for details.

Constant N

Recall that the log-likelihood for the jth locus is l(e, p) = lj
(
(e, p),Xj ,Nj

)
. To simplify nota-

tion, the indices j are omitted in ej , pj , Xj , Xi,j , Nj , and Ni,j . Suppose (e0, 0) is the true value of

(e, p), then the derivative of l(e, p) evaluated at (e0, 0) is

∂l(e0, 0)

∂p
= 2

n∑
i=1

{
2−Nie−Xi

0 (1− e0)Xi−Ni − 1
}
, (e1)

whose expectation is equal to

E

{
∂l(e0, 0)

∂p

}
= 2n

∞∑
m=1

m∑
j=0

{[
(12)m

ej0(1− e0)m−j
− 1

]
Pr(X = j|N = m) Pr(N = m)

}

= 2n

∞∑
m=1

Pr(N = m)

m∑
j=0

(
m

j

)
[2−m − ej0(1− e0)

m−j ] = 0

Denote by (ê, p̂) the maximizer of l(e, p). It is easy to see that ẽ =
∑n

i=1Xi/
∑n

i=1Ni is the

maximizer of l(e, 0). We have the following lemma:

Lemma 1.

Pr[∂l(ẽ, 0)/∂p < 0]

≤Pr [(ẽ, 0) is a strict local maximizer of l(e, p)]

≤Pr[∂l(ẽ, 0)/∂p ≤ 0].

Proof. If (ẽ, 0) is a strict local maximizer of l(e, p), there there exists δ > 0, such that for any

ε ∈ [0, δ), l(ẽ, 0)− l(ẽ, ε) ≥ 0. Therefore,

∂l(ẽ, 0)

∂p
= lim

ε↓0

l(ẽ, ε)− l(ẽ, 0)

ε
≤ 0.
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On the other side, given ∂l(ẽ, 0)/∂p < 0,

l(e, p) =l(ẽ, 0) + [∂l(ẽ, 0)/∂e](e− ẽ) + [∂l(ẽ, 0)/∂p](p− 0)[1 + o(|p|+ |e− ẽ|)]

+
∂2l(ẽ, 0)

∂e2
(e− ẽ)2[1 + o(|e− ẽ|)]

for (e, p) in a neighborhood of (ẽ, 0). By ∂l(ẽ, 0)/∂e = 0, ∂l(ẽ, 0)/∂p < 0, and

∂2l(ẽ, 0)

∂e2
=

n∑
i=1

−Xi/e
2 − (Ni −Xi)/(1− e)2 < 0,

we have l(e, p) < l(ẽ, 0) for (e, p) in some neighborhood of (ẽ, 0). Lemma 1 is proved.

Lemma 2.

Pr(
∂l(ẽ, 0)

∂p
< 0) ≤ Pr(T = 0) ≤ Pr(

∂l(ẽ, 0)

∂p
≤ 0),

where T is the likelihood ratio test statistic defined in (3) or (4) of the main text.

Note that Pr(T = 0) = Pr(p̂ = 0), Lemma 2 follows immediately from Lemma 1.

It should be noted that the above lemmas are suitable for both small sample size and large

sample size. As stated in Self and Liang (1987), T should be asymptotically distributed as D0.5,1,

which implies

Pr(T = 0)→ 0.5. (e2)

In what follows, we show that Lemma 2 also implies (e2). From Lemma 2, by virtue of Linderberg’s

Central Limit Theorem under H0, as n→∞, we have that both n−1/2∂l(e0, 0)/∂p and
√
n(ẽ− e0)

converge to normal distributions so that

Pr

(
∂l(ẽ, 0)

∂p
< 0

)
→ 0.5 and Pr

(
∂l(ẽ, 0)

∂p
≤ 0

)
→ 0.5,

which implies (e2) by Lemma 2.
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Now we examine the small sample property of p̂ with constant N . Before stating Theorem 1,

we assume the following conditions hold:

K ∈ {0, 1, · · · ,m}, aj ∈ Z+,
K∑
j=0

aj = n,
K∑
j=0

ajg(

∑K
k=0 kak
mn

,m, j) < 0, (C-1)

K ∈ {0, 1, · · · ,m}, aj ∈ Z+,

K∑
j=0

aj = n,

K∑
j=0

ajg(

∑K
k=0 kak
mn

,m, j) ≤ 0. (C-2)

Define the function

g(e,m, j) =
0.5m

ej(1− e)m−j
− 1 for g ∈ [0, 0.5]× N2

+

and the sets

Ak(n,m) = {(K,a = (a0, a1, · · · , aK)τ )|K, aj satisfies condition (C-k) for j = 0, 1, · · · ,K}, k = 1, 2.

Applying Lemma 2, we have the following Theorem.

Theorem 1. Given a fixed integer m, under H0, we have Pr(T = 0|Ni = m) ∈ ∑
(K,a)∈A1(n,m)

(
n

a0 a1 a2 · · · aK

) K∏
j=0

B(j,m, e0)
aj ,

∑
(K,a)∈A2(n,m)

(
n

a0 a1 a2 · · · aK

) K∏
j=0

B(j,m, e0)
aj

 ,
where B(j,m, e0) is defined in (2) of the main text.

Based on Theorem 1, we calculated the upper and lower bounds of Pr(T = 0|Ni = m) for

n = 20, 50, 100, e = 0.001, 0.01, 0.05 and m = 2, 5, 10, 20. We found that the difference between the

upper bound and lower bound was uniformally smaller than 10−5. Therefore, we display in Figure

1 the mean value of the upper bound and lower bound (denoted by ‘prob’) for each parameter

combination, which is decreasing in both n and e. These probabilities greatly deviate from the

limiting value 0.05, especially when e ≤ 0.01.
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Figure 1: Pr(T = 0|Ni = m) under H0 with constant N (= m).
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Non-constant N

Now we consider a non-constant N . We need the following condition.

vj ∈ Z+, vj ≤ mj , for j = 1, 2, · · · , n;
n∑
j=0

g(

∑n
k=0 vk∑n
k=0mk

,mj , vj) < 0, (C-3)

vj ∈ Z+, vj ≤ mj , for j = 1, 2, · · · , n;

n∑
j=0

g(

∑n
k=0 vk∑n
k=0mk

,mj , vj) ≤ 0 (C-4)

Define the sets

Uk(n,m) = {v = (v1, v2, · · · , vn)τ )|vj satisfies condition (C-k) for j = 0, 1, · · · , n}, k = 1, 2,

where m = (m1, · · · ,mn)τ .

Similarly to Theorem 1, we have

Theorem 2. If N1, N2, · · · , Nn are independently distributed as GP(µ, λ), then the MLE p̂ satisfies

Pr(T = 0) = Pr(p̂ = 0) ∈ [Pr(∂l(ẽ, 0)/∂p < 0),Pr(∂l(ẽ, 0)/∂p ≤ 0)] ,

where

Pr(∂l(ẽ, 0)/∂p < 0) =
m∏
k=1

 1

mk!
umk(1 + amk)

mk−1e−u(1+amk)
∑

v∈U1(n,m)

n∏
j=0

B(vj ,mj , e0)

 ,
Pr(∂l(ẽ, 0)/∂p ≤ 0) =

m∏
k=1

 1

mk!
umk(1 + amk)

mk−1e−u(1+amk)
∑

v∈U2(n,m)

n∏
j=0

B(vj ,mj , e0)

 ,
and

u = µ
√
λ, a =

1

u
− 1

µ
.

Here GP(µ, λ) is the generalized Poisson distribution with mean µ and variance µ/λ, whose prob-

ability function is

Pr(N = k) =
1

k!
uk(1 + ak)k−1e−u(1+ak), u = µ

√
λ, a = 1/u− 1/µ.

Based on Theorem 2, we also calculated the upper and lower bounds of Pr(T = 0|Ni = m) for

n = 20, 50, 100, e = 0.001, 0.01, 0.05 and m = 2, 5, 10, 20. We found a trend very similar to that for

constant N .
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Figure 2: Pr(T = 0) under H0 when N ∼ GP(µ, 1).
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