
S2 Text

Approximate calculations for the time evolution of the distribution

moments Using the Master Equation for the number of individuals of each strain (1),

we are able to obtain the time evolution of the first three moments of the distribution of

x. Equation (1) is sometimes called “Simple Growth Equation” and can be exactly

solved (see, for example,[38]) using generating functions like

F (a, t) :=
∑
NA

aNA P (NA, t). (21)

To approximate the time evolution of the first three moments of x, however, we do

not need the full solution, but only the first three moments of NA and NB . To this end,

we insert the Master Equation (Eq. (1) in main text) in the definition of the generating

function to get the time derivative for F (a, t):

d

dt
F (a, t) =

(
−a + a2

)
∂aF (a, t). (22)

To obtain the time evolution of the nth moment, we apply the nth derivative with

respect to a on both sides of equation (22), and solve for the corresponding moment.

For the first three moments, the solution is

〈NA〉 = etK1 , (23)

〈N2
A〉 = et(et − 1)K1 + e2tK2 , (24)

〈N3
A〉 = et

(
−3et + 2e2t + 1

)
K1 + 3e2t

(
et − 1

)
K2 + e3tK3 . (25)

K1,K2,K3 are integration constants, which depend on the initial conditions. We

consider the case of Poisson initial conditions. This means that the initial number of A

is Poisson-distributed with mean value N̄A,0,
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〈NA(t = 0)〉 !
= N̄A,0 , (26)

and, since for the Poisson distribution the variance equals the mean, we get

VarNA(t = 0)
!
= N̄A,0 . (27)

Employing these conditions in the solutions of the differential equations we found in Eq.

(23) and (24), we get

〈NA〉 = etN̄A,0 , (28)

VarNA = et(2et − 1)N̄A,0. (29)

By the known properties of the Poisson distribution, the skewness of our initial

distribution equals to 1/
√
N̄A,0. Using Eqs. (25), (28), and the definition of the

skewness, we obtain the general time evolution of the skewness

v(NA) =
N̄A,0

(
6e2t − 6et + 1

)
et(

N̄A,0 (2et − 1) et
)3/2 . (30)

For NB , the calculations are analogous. Note also that all calculations were exact so far.

With the moments of NA and NB we can find the (approximate) time evolution of

variance and skewness of x = NA/(NA + NB). For the mean of x we have already seen

in the exact calculation (see Eq. (??)) that it does not change with time, and hence its

time evolution is already known.

To calculate the time evolution of the variance of x, we consider x as a function of

NA and NB :

x(NA, NB) =
NA

NA + NB
. (31)
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Using the time independence of the mean (〈x(NA, NB)〉 = x(〈NA〉, 〈NB〉)), a bivariate

Taylor expansion around (〈NA〉, 〈NB〉), and the time evolution of the moments, Eqs.

(28) and (30), we get for the variance of x:

Varx = 〈[x(NA, NB)− 〈x(NA, NB)〉]2〉 (32)

=
〈

[x(NA, NB)− x(〈NA〉, 〈NB〉)]2
〉

(33)

= 〈[x′NA
(〈NA〉, 〈NB〉)(NA − 〈NA〉)+ (34)

+ x′NB
(〈NA〉, 〈NB〉)(NB − 〈NB〉) +O

(
N−2A , N−2B

)
]2〉 (35)

=
〈NB〉2

〈N〉4
VarNA +

〈NA〉2

〈N〉4
VarNB +O

(
N−2A , N−2B

)
(36)

=
(2− e−t)

N4
0

NB,0NA,0 (NA,0 + NB,0) +O
(
N−2A , N−2B

)
(37)

=
2− e−t

N̄0
x̄0(1− x̄0) (38)

−→
t→∞

2

N̄0
x̄0(1− x̄0) (39)

From this we obtained Eq. (2) in main text. For infinite times the approximate result

for the variance matches the exact one of Eq. (??).

The skewness of the x distribution is calculated analogously:

v(x) =

〈(
x(NA, NB)− x(〈NA〉, 〈NB〉)√

Varx

)3
〉

(40)

=
x0e
−2t (12x2

0e
2t − 12x2

0e
t + 2x2

0

)
N2

0

(
x0

N0
(−2x0et + x0 + 2et − 1) e−t

)1.5
+

x0e
−2t (−18x0e

2t + 18x0e
t − 3x0 + 6e2t − 6et + 1

)
N2

0

(
x0

N0
(−2x0et + x0 + 2et − 1) e−t

)1.5 +O
(
N−2A , N−2B

)
. (41)
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