
S1 Text

Calculation of probability distribution. Each population in the ensemble is

initialized with A0 individuals of type A and B0 of type B. In the general case, A0 and

B0 are independent random variables for each population with distributions P (A0) and

P (B0). All populations evolve for ∆N reproduction events, of which a random amount

∆A generate new A-individuals. From the mathematical literature [35], it is well-known

that ∆A follows a beta-binomial, with A0, B0 and ∆N as parameters. The fraction of

A-individuals x, then follows the probability

P (x) =
∑

A0,B0

P (A0)P (B0)P (∆A = x(A0 +B0 + ∆N)−A0|A0, B0,∆N) , (3)

where the sums run over all allowed values of their respective indices.

P (∆A = k|A0, B0,∆N) is the probability of ∆A being equal to k, given the values of

A0, B0 and ∆N . The sum may easily be performed numerically. For the moments of

the distribution there are, however, also closed-form analytic expressions.

Exact calculation of asymptotic moment values Let 〈·〉0 be the average over

the initial conditions, 〈·〉∆A be an average over ∆A, and 〈·〉 be an average over both

quantities. From the properties of the beta-binomial distribution we know that, for a

given initial condition, we have

〈∆A〉∆A =
∆NA0

A0 +B0
, (4)

Var[∆A] =
∆NA0B0(A0 +B0 + ∆N)

(A0 +B0)2(A0 +B0 + 1)
. (5)

For the mean of 〈x〉, one obtains

〈x〉 (4)
= 〈x0〉0 = x̄0 .

Hence, the average composition is exactly conserved throughout the time evolution of

the populations. In other words, the stochastic process is a martingale.
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For the variance we obtain

Var[x] =

〈(
A0 + ∆A

A0 +B0 + ∆N

)2
〉
− 〈x0〉20 (6)

=

〈
A2

0 + 2A0 〈∆A〉∆A + Var[∆A] + 〈∆A〉2∆A

(A0 +B0 + ∆N)2

〉
0

− 〈x0〉20 (7)

(4)
=

〈(
A0

A0 +B0

)2

+
Var[∆A]

(A0 +B0 + ∆N)2

〉
0

− 〈x0〉20 (8)

(5)
= Var[x0] +

〈
∆NA0B0

(A0 +B0)2(A0 +B0 + ∆N)2(A0 +B0 + 1)

〉
0

(9)

= Var[x0] + 〈x0(1− x0)〉0

〈
1

N0 + 1

∆N

N0 + ∆N

〉
0

. (10)

For long times (i.e., ∆N � 1), ∆N +N0 ' ∆N and (10) reduces to

Var[x]→ Var[x0] +

〈
1

N0 + 1

〉
0

〈x0(1− x0)〉0 . (11)

The argument up to here is completely independent of the particular choice of initial

conditions. If the initial distribution is known, we may even make the value of the

variance more explicit. In particular, consider the distribution we obtain from

experiments: in each well, N0 is Poisson-distributed with mean N̄0. Then one gets

〈
1

N0 + 1

〉
0

=
1− e−N̄0

N̄0
. (12)

Within each well of (random) size N0 there is an initial random number A0 of

A-individuals, which follows a Binomial distribution with parameters N0 and x̄0. For

this choice of distribution, it is possible that N0 = 0, which would lead to an

undetermined value of x0 = A0/N0, and therefore also for the average 〈x0〉. We can

solve this problem by redefining x0:

x0 :=


x̄0 , N0 = 0

A0

N0
, otherwise

(13)

so that x0 and its average have definite values, and 〈x0〉0 = x̄0. With this we can
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compute the second moment of x0:

〈x2
0〉0 =

∞∑
N0=1

e−N̄0
N̄N0

0

N0!

{
N0∑

A0=0

(
N0

A0

)
x̄A0

0 (1− x̄0)N0−A0
A2

0

N2
0

}
+ x̄2

0e−N̄0 . (14)

The sum inside the braces can be solved using exponential and binomial series and yields

〈x2
0〉0 = x̄2

0 + x̄0(1− x̄0)e−N̄0

∞∑
N0=1

N̄N0
0

N0!N0
. (15)

The remaining series is an exponential integral (Ei), and therefore

Var[x0] = x̄0(1− x̄0)e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
=: x̄0(1− x̄0)ϕ(N̄0) , (16)

where we defined ϕ(N̄0) := e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
. Then the variance of x reads

Var[x] = Var[x0] +
1− e−N̄0

N̄0
〈x0(1− x0)〉 (17)

= x̄0(1− x̄0)

[
ϕ(N̄0) +

1− e−N̄0

N̄0

(
1− ϕ(N̄0)

)]
. (18)

For large N̄0, through an asymptotic expansion [47]

Ei ' 1

N̄0
eN̄0

N̄0−1∑
m=0

m!N̄−m0 − 1

3

√
2π

N̄0
, (19)

ϕ(N̄0) can be approximated by

ϕ(N̄0) ' 1

N̄0

N̄0−1∑
m=0

m!N̄−m0 − e−N̄0

[
1

3

√
2π

N̄0
− γ − ln(N̄0)

]
. (20)

To leading order in N̄0, then, the variance of x becomes

Var[x] = x̄0(1− x̄0)
2

N̄0
,

in perfect agreement with our approximate results based on Master equations (Eq. (2)

in main text, see also below).
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