S1 Appendix. Reaction rate for the reduced system.

Let

$$
L=\left[\begin{array}{cc}
I & 0 \tag{1}\\
-\mathbf{1}^{T} & 1
\end{array}\right]
$$

where I is the identity matrix of dimension $n-1$. Then with a similarity transformation by L we have

$$
L^{-1} A L=\left[\begin{array}{cc}
\tilde{B} & y \tag{2}\\
f_{n} \mathbf{1}^{T} & -f_{n}
\end{array}\right] .
$$

Let β denote the solution for equation (W Z$)$. We construct a nonsingular matrix

$$
M=\left[\begin{array}{ll}
I & \beta \tag{3}\\
0 & 1
\end{array}\right]
$$

Continue the similarity transformation by M , we have

$$
\mathbb{A}=M^{-1} L^{-1} A L M=\left[\begin{array}{cc}
\tilde{B}-f_{n} \beta \mathbf{1}^{T} & f_{n}\left(1-\mathbf{1}^{T} \beta\right) \beta \tag{4}\\
f_{n} \mathbf{1}^{T} & -f_{n}\left(1-\mathbf{1}^{T} \beta\right)
\end{array}\right]
$$

When $f_{n} \ll 1 / T_{\text {relax }}, f_{n}$ is small. Let $\gamma=-f_{n}\left(1-\mathbf{1}^{T} \beta\right)$ and

$$
\bar{A}=\left[\begin{array}{cc}
\tilde{B}-f_{n} \beta \mathbf{1}^{T} & 0 \tag{5}\\
f_{n} \mathbf{1}^{T} & \gamma
\end{array}\right]
$$

Then the eigenvalues of A can be approximated by corresponding eigenvalues of \bar{A}.
Note that γ is an eigenvalue of \bar{A} and $|\gamma|<f_{n}$, according to ([2.3)
$\left|\lambda_{n}\right|<f_{n} \ll \min _{1 \leq i \leq n-1}\left|\hat{\lambda}_{i}\right|$. Thus γ approximates λ_{n}.

We denote the perturbation matrix as

$$
E=\mathbb{A}-\bar{A}=\left[\begin{array}{cc}
0 & -\gamma \beta \tag{6}\\
0 & 0
\end{array}\right]
$$

From the Bauer and Fike theorem [14], we have that

$$
\begin{equation*}
\left|\lambda_{n}-\gamma\right| \leq\|E\| \leq|\gamma| \tag{7}
\end{equation*}
$$

This estimation allows a large relative error. To accurately estimate the relative error, we note that \mathbb{A} is similar to A, which is diagonalizable. Then according to Corollary 2.2 in Eisenstat and Ipsen [15], we have

$$
\frac{\left|\lambda_{n}-\gamma\right|}{\left|\lambda_{n}\right|} \leq\left\|\mathbb{A}^{-1} E\right\|=\left\|\left[\begin{array}{cc}
0 & -\gamma \tilde{B}^{-1} \beta \tag{8}\\
0 & f_{n} \mathbf{1}^{T} \tilde{B}^{-1} \beta
\end{array}\right]\right\|=O\left(\frac{f_{n}}{\min _{1 \leq i \leq n-1}\left|\hat{\lambda}_{i}\right|}\right)=O\left(f_{n} T_{\text {relax }}\right) .
$$

Thus when condition ([23]) is satisfied, λ_{n} can be well approximated by γ.

