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Abstract

Background

The compactMotorized orthosis for home rehabilitation ofGait (MoreGait) was developed

for continuation of locomotion training at home. MoreGait generates afferent stimuli of walk-

ing with the user in a semi-supine position and provides feedback about deviations from the

reference walking pattern.

Objective

Prospective, pre-post intervention, proof-of-concept study to test the feasibility of an unsu-

pervised home-based application of five MoreGait prototypes in subjects with incomplete

spinal cord injury (iSCI).

Methods

Twenty-five (5 tetraplegia, 20 paraplegia) participants with chronic (mean time since injury:

5.8 ± 5.4 (standard deviation, SD) years) sensorimotor iSCI (7 ASIA Impairment Scale (AIS)

C, 18 AIS D; Walking Index for Spinal Cord Injury (WISCI II): Interquartile range 9 to 16)

completed the training (45 minutes / day, at least 4 days / week, 8 weeks). Baseline status

was documented 4 and 2 weeks before and at training onset. Training effects were as-

sessed after 4 and 8 weeks of therapy.

Results

After therapy, 9 of 25 study participants improved with respect to the dependency on walk-

ing aids assessed by the WISCI II. For all individuals, the short-distance walking velocity

measured by the 10-Meter Walk Test showed significant improvements compared to
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baseline (100%) for both self-selected (Mean 139.4% ± 35.5% (SD)) and maximum (Mean

143.1% ± 40.6% (SD)) speed conditions as well as the endurance estimated with the six-

minute walk test (Mean 166.6% ± 72.1% (SD)). One device-related adverse event (pressure

sore on the big toe) occurred in over 800 training sessions.

Conclusions

Home-based robotic locomotion training with MoreGait is feasible and safe. The magnitude

of functional improvements achieved by MoreGait in individuals with iSCI is well within the

range of complex locomotion robots used in hospitals. Thus, unsupervised MoreGait train-

ing potentially represents an option to prolong effective training aiming at recovery of loco-

motor function beyond in-patient rehabilitation.

Trial Registration

German Clinical Trials Register (DKRS) DRKS00005587

Introduction
Loss of mobility has devastating effects on the quality of life of those affected and their ability
to remain independent in the community. This applies to individuals with lesions of the central
nervous system (CNS) sustained for example through stroke or spinal cord injury (SCI). In
subjects with incomplete SCI (iSCI), intensive gait training leads to substantial improvements
in walking function [1, 2]. The fundamental concept of motor function restoration is based on
the notion that repeated execution of motor tasks induces plasticity—functional and structural
reorganization of neuronal circuits—in the injured brain and spinal cord [3, 4]. A neuroana-
tomical structure that is particularly relevant for locomotion is the central pattern generator
(CPG), which consists of a cluster of neuronal networks in the spinal cord [5–8] and is involved
in the generation of stepping-like movements in supine and upright position in humans [9,
10]. In completely spinalized animals, the CPG can be trained by means of appropriate para-
digms [11]. A series of recently conducted animal experiments introducing a chronological spi-
nal cord dual-lesion paradigm revealed that in incomplete spinal lesions, adaptations of the
CPG contribute to a larger extent to the recovery and re-expression of the locomotor pattern
than was previously assumed [12]. To achieve a relevant level of independent locomotion, the
CPG needs sufficient supraspinal input, [13] as well as afferent feedback from the peripheral
nervous system [14].

Several factors of motor learning—task specificity, repetition, active participation and ap-
propriate intrinsic and extrinsic feedback—have been identified as contributing to the long-
term retention of a newly acquired skill [15, 16]. One clinical concept that successfully capital-
izes on these principles is body weight-supported treadmill training (BWSTT) [17–19], which
has been further transformed from manually assisted to automated BWSTT, including motor-
driven gait orthosis [20] or specialized locomotion training devices [21]. While feasibility of
robot-based locomotor training has been shown, its superiority to conventional gait training
still has to be demonstrated [22]. Automated treadmill training substantially reduces therapists’
physical workload while also allowing the number of task-specific repetitions to be increased
[23]. High-frequency task-oriented gait training requires substantial technical and personal
support, which can primarily be provided by in-patient rehabilitation facilities. However,
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increasing economic constraints in health care require the duration of SCI in-patient rehabili-
tative treatment to be shortened [24]. Consequently, with earlier transition into out-patient
and home-based therapy, the quantity and quality of rehabilitation training is dramatically re-
duced. Moreover, comparable studies in individuals with chronic iSCI suggest that long-term,
mid-intensity locomotion training over a period of several months is more effective than appli-
cation of high-intensity training protocols for only a few weeks [25, 26]. These facts underline
the need to continue intensive locomotor training beyond in-patient rehabilitation.

Patients can most easily incorporate practice in their daily lives in a home-based training
regimen. This may offer the advantage of practice within their personal space, where problem-
solving is highly motivated [22]. Locomotion robotic systems may effectively support home-
based training approaches by ensuring the generation of physiological movements and by pro-
viding objective feedback on training results. While the need for technically advanced locomo-
tion therapy systems for home use is obvious, to date no such systems are available. A simple
transfer of the existing devices to the patients’ homes is not possible, since most of them are re-
stricted to application in a clinical or out-patient setting due to their size, weight and price. In
addition, all of the devices have to be operated by skilled therapists. The main technical chal-
lenges of a home-based locomotion therapy device involve safety issues and its operation by
the users themselves.

TheMotorized orthosis for home rehabilitation of Gait (MoreGait) is a robotic locomotion
training device which has been developed and specifically designed for unsupervised, home-
based therapy [27]. From a neurobiological point of view, it aims to promote neuroplasticity at
different levels within the CNS: 1) It aims to generate important sensory stimuli, which were
found to activate the CPG at the spinal level [14, 28, 29] and 2) it provides external feedback
about the patient’s movement performance aiming at the compensation of the loss of sensation
and/or proprioception and the enhancement of motor relearning at a supraspinal level [30].
From 2006 to 2008, 5 prototypes were built exclusively for research purposes and tested in sev-
eral end users with iSCI [31].

The aim of this prospective, pre-post intervention proof-of-concept study was to test the
safety of autonomous locomotor training with the MoreGait prototypes at the homes of indi-
viduals with sensorimotor iSCI and to obtain preliminary data about its efficacy. The pilot
study results indicate that home-based robotic locomotion training with MoreGait is feasible
and safe. The magnitude of functional improvements achieved by MoreGait training in indi-
viduals with iSCI is well within the range of complex locomotion robots used in hospitals.

Study Participants and Methods

Participants
For this prospective, baseline-controlled, single center cohort proof-of-concept study, inclusion
criteria were (1) age between 18 and 60, (2) chronic (at least 1 year after trauma), (3) traumatic
or ischemic/haemorrhagic sensorimotor iSCI (ASIA Impairment Scale (AIS) C, D [32]) and
(4) with at least limited household ambulation (Walking Index for Spinal Cord Injury II [33]
(WISCI II)> = 5). Exclusion criteria were body weight over 130 kg, height over 200 cm, con-
tractures restricting the range of motion (ROM) to less than 80% of normal ROM, extreme
spasticity, pressure sores, severe osteoporosis as well as any disease condition other than iSCI
interfering with walking ability. Dropout criteria were the participant’s request to withdraw
from the study and a weekly therapy intensity less than 4x 30 minutes. Study participants were
identified by screening of the institutional database or were informed by advertisement on the
institutional and other webpages. Additionally, a call for study participation was published in a
magazine for people with disabilities focusing on individuals with SCI [34].
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Between January 2009 and January 2011, 46 individuals were screened, from whom 35 were
included in the study. The intended number of study participants finalizing the training was
set to 30 prior to the start of study due to the limited number of available prototypes and due to
funding and time constraints. Twenty-five individuals (11 female, 14 male; 5 tetraplegic, 20
paraplegic; mean age: 44.0 ± 12.4 (SD) years) with chronic (mean time since injury: 5.8 ± 5.4
(SD) years) sensorimotor iSCI (7 AIS C, 18 AIS D; WISCI II from 5 to 19) completed the train-
ing procedure (Fig. 1). Ten of these twenty-five individuals who completed the training took
part in the follow-up assessment.

Ethics statement
The study was approved by the Ethics Committee of Heidelberg University Hospital (vote no.
MV-174/2007) and was conducted according to the World Medical Association Declaration of
Helsinki and the Guidelines for Good Clinical Practice. The protocol submitted to the ethical
committee for this clinical trial and supporting TREND checklist are available as supporting
information (see S1 TREND Checklist and S1 Protocol).

It has been registered at the German Institute for Medical Documentation and Information
(DIMDI) as a clinical trial (registration no. 9053) with a novel medical product according to
the guidelines of the European Medicinal Devices Act and with the main ID DRKS00005587 in

Fig 1. CONSORT flow diagram. The numbers of subjects involved in the different phases of the study are shown in the diagram.

doi:10.1371/journal.pone.0119167.g001
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the the German Clinical Trials Register (DKRS). Participants gave written informed consent
prior to study inclusion. The individual shown in Fig. 2 of this manuscript has given written in-
formed consent (as outlined in PLOS consent form) to publish his case details.

Robotic device
The MoreGait device used in this study consists of a special seat combined with an inclined
backrest, a pneumatically driven gait orthosis for each side to assist movements of both legs in
the sagittal plane (independently driven knee and ankle joint, hip joint mechanically linked to
knee joint via a fixed kinematic chain that allows only horizontal movements of the ankle
joint) and a dedicated mechanical foot stimulation unit. Its dimensions are 172 x 70 x 130 cm
(l x w x h) and the total weight is approximately 115 kg (Fig. 2A).

Pneumatic fluidic muscles (Festo AG & Co. KG, Esslingen, Germany) were selected as actu-
ators. They offer the advantage of inherent low stiffness, which results in soft, safe and comfort-
able movements. Additionally, control parameters were set to allow for deviations of up to 5°
from the predefined movement trajectory [35, 36], which permits the user to explore different
muscular activation strategies to follow the reference trajectories.

For safety reasons, the user’s body is placed in a semi-supine position. In this configuration,
sufficient loading of the foot sole during stance phase cannot be generated by the user’s own body

Fig 2. Overview of the components of the MoreGait device. A subject during training in the MoreGait device (A), top (B) and front (C) view of the
mediolateral bars of the stimulative shoe, user interface and feedback screen (D).

doi:10.1371/journal.pone.0119167.g002

Feasibility of At-Home Robotic Locomotion Therapy

PLOS ONE | DOI:10.1371/journal.pone.0119167 March 24, 2015 5 / 19



weight. Therefore a novel device—a “stimulative shoe”—was developed to mimic the loading of
the foot sole without requiring the patient to be completely verticalized. This mechanical stimula-
tion unit consists of 10 mediolateral plastic bars, which are mounted on pairs of pneumatically
driven short-stroke cylinders (Fig. 2B and Fig. 2C). The generated foot loading reaches approx.
30% body weight. The timing of actuation with a sequential stance-phase related cylinder activa-
tion sequence starting at the heel and ending in the toe region and the force of each pair of cylin-
ders can be set by software, which forms the basis for generating a physiological loading pattern.
The stimulative shoe is by design also capable of generating artificial loading patterns such as
gait-phase related vibrational stimuli. However, in its current version the mobile compressor does
not provide enough air-mass per minute to apply sufficient force in vibration mode. For this rea-
son, the initial plan to randomly assign the study participants into two groups, who receive a ther-
apy either based on physiological or vibrational loading of the foot sole, was abandoned.

One of the key factors for any kind of locomotion therapy to succeed is active participation
by the patients. In order to continuously provide the users with information about whether
they are performing training correctly, a feedback functionality was implemented. A rating
measure is calculated from the user’s estimated active torques, and both the progress of the
training and the absolute performance level are visualized on a display (Fig. 2D).

The right orthosis as well as the backrest can be lowered manually, enabling the patient to
transfer autonomously to the lowered backrest. After successful transfer, the backrest can be in-
clined and the orthosis can be lifted in the training position. Leaving the device is performed in
reverse order.

Study protocol
After screening and study inclusion, 3 assessment visits(0, 2 and 4 weeks) within a 4-week base-
line period were planned prior to training onset, followed by assessments in the middle and at
the end of an 8-week training period and a follow-up assessment 3 months after the end of
training (Fig. 3) [37]. Assessments were performed by unblinded examiners either at the Spinal
Cord Injury Center of Heidelberg University Hospital or at the study participants’ homes. Base-
line assessments and follow-up assessments were done at the Spinal Cord Injury Center, where-
as the majority of 4-week and 8-week assessments were conducted at the participants’ homes.

The assessments of each visit consisted of a set of well-established functional and neurologi-
cal tests. The assessment scheme and outcome parameter were defined prospectively before the
start of the study and was not changed over the course of the study. The self-selected WISCI II
was defined as the primary outcome measure of the study due to its importance for the partici-
pants [38]. The WISCI II is a 21-item ordinal scale that classifies dependency on walking aids
over a distance of 10 meters (0 = not able to walk 10meters, 20 = walking without help for 10
meters). For quantification of walking ability, the 10-Meter Walk Test (10MWT) at self-select-
ed speed (10MWT(sss)) as well as maximum speed (10MWT(ms)), the Timed Up and Go Test
(TUG) and the six-minute walk test (6-MIN-TEST) were applied [39, 40]. The 10MWTmea-
sures the time required to walk 10 meters and quantifies the short-duration walking speed. The
TUG measures the time required for a patient to stand up from an armchair, walk 3 meters, re-
turn to the chair, and sit down. The 6-MIN-TEST measures the distance walked within 6 min-
utes and serves as a measure for endurance. All walking tests were performed with the
participants using their currently appropriate walking aid(s) on even and straight walkways. If
tests were performed at the participant’s home, walking tests were done on barrier free, even
grounds, like sports fields or non-crowded roads.

Dermatomes and myotomes as defined by the International Standards for Neurological
Classification of Spinal Cord Injury (ISNCSCI) [41] were examined to check for spontaneous
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neurological recovery during baseline. ISNCSCI’s lower extremity motor score (LEMS) was
used to specifically assess the changes in strengths of the key muscles of the legs during the
training period. A high-quality ISNCSCI assessment was assured by trained assessors [42] and
computer-based scaling, scoring and classification of the ISNCSCI [43]. To determine the de-
gree of spasticity in hip, knee and ankle joints in terms of increased resistance against passive
movements in the sagittal plane, the modified Ashworth scale (MAS) was administered [44].

Training
During the 8-week therapy period, individuals trained with the MoreGait device for 30–45
minutes per day, 4 to 6 days per week. Users were instructed to set step frequency at a comfort-
able level to avoid fatigue during each session. The training took place at the participants’
homes without supervision of the study personnel (mean distance from the spinal cord injury
center in Heidelberg 209.12 ± 162.16 km; Google Maps (http://maps.google.com), fastest
route). Prior to the first training session, each participant was familiarized with proper usage of
the MoreGait machine. The 30-minute instruction included practicing the transfer procedure
for getting into and out of the device and securing the thigh and shank straps to the legs, along
with explaining the elements of the user interface displayed on the touch screen together with

Fig 3. Study protocol showing the course of the study and its assessments on a timeline. Three baseline (BL) assessments within the first 4 weeks are
followed by 2 assessments at the middle and end of the training period. The follow-up assessment was carried out 3 months after the end of training.
Assessments included theWalking Index for Spinal Cord Injury II (WISCI II), Timed Up and Go Test (TUG), 10-MeterWalk Test (10MWT) at both self-
selected and maximum speed, six-minute walk test (6-MIN-TEST), as well as International Standards for Neurological Classification of Spinal Cord Injury
(ISNCSCI) assessments and measurement of spasticity according to the modified Ashworth scale (MAS).

doi:10.1371/journal.pone.0119167.g003
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the correct selection of therapy parameters. During a short trial session, an experienced techni-
cian or scientist adjusted the length of the machine’s linkages and position of the orthotic fit-
tings in order to ensure correct alignment of technical and anatomical joints. To help isolate
the effect of the training device, participants were instructed not to modify their regular physi-
cal therapy, unsupervised training program, or antispastic medication during the study period.

User survey
To assess the users’ satisfaction with technical design, safety and therapeutic functionality of
the MoreGait device, a user survey was made. The survey consisted of a paper questionnaire
which was sent to each study participant who finished the 8-weeks of therapy. The proprietary
questionnaire consisting of 51 questions was designed for obtaining dedicated user feedback
on details of the MoreGait device. It mainly used a five-point scale for rating of answers, which
is known from other standardized surveys on assistive technology [45], supplemented by Yes/
No questions and comment fields.

Twenty of the twenty-five study participants, who completed the 8-weeks MoreGait train-
ing, replied to the survey. The results were grouped into the three main categories “Therapy
outcome”, “Transfers, fastening and release” and “Training experience” including perception
of safety. Results were analyzed on a descriptive basis eg, with boxplots.

Statistical analyses
Statistical analysis was performed with R 2.15.1 [46]. Friedman’s test was used to test for overall
significance of differences between all assessments, including baseline (BL1, BL2, BL3) assess-
ments. For statistical analysis, raw values were used. Significance level was set to α = 0.05. Pair-
wise Wilcoxon-Mann-Whitney tests were used for post hoc comparisons between all
assessment visits, including baseline visits. To address the multiple testing problem, Benja-
mini-Hochberg-corrections [47] were applied. The 4-week and 8-week assessments were com-
pared separately with each of the three baseline assessments. Differences to baseline were
considered significant, if the mean of the 3 p-values from the comparison of each baseline as-
sessment with the respective therapy assessment was �P < 0.05. An overview of all p-values and
confidence intervals is provided in S1 Table. As non-parametric tests were used, confidence in-
tervals (ci) are intervals of the differences of the location parameters.

Baseline stability was tested in the context of the Friedman’s test. The baseline is considered
stable, if pairwise post hoc tests of all three baseline assessments are not significant.

If not stated otherwise, numbers are displayed as mean ± SD. To allow for a more general-
ized analysis of the assessments of different study participants at 4 and 8 weeks of therapy, per-
centage values are calculated which are normalized to the mean baseline representing 100%.

The follow-up analysis was reduced to descriptive statistics because of the low number of
available datasets for this stage (N = 10). Data from individuals that did not complete the study
were not included in the analysis.

Results

Outcomes on safety and dropouts
One device-related adverse event (Grade 2–3 [48] pressure sore on the tip of the left big toe)
caused 1 participant to drop out. The pressure sore was caused by a pressurized bar of the stim-
ulative shoe, which applied its full load to the tip of the big toe. It healed after discontinuation
of therapy and wound dressing for 2 weeks. After implementation of a foot length-dependent
deactivation of most anterior mediolateral bars of the stimulative shoe, no further adverse
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events occurred. Other reasons for dropouts were prolonged periods of non-use, such as those
resulting from bladder infections or technical problems in combination with delayed repair
due to great distances between the users’ homes and the authors’ institutions (Fig. 1). Individu-
als who did not attend the follow-up assessment, but completed the training were not consid-
ered as dropouts.

Stability of baseline
Baseline stability was shown for all outcome measures, since all baseline post hoc comparisons
were not significant (see S1 Table for detailed information). During baseline, three temporary
conversions occurred (AIS C to B and back to C, AIS C to D and back to C, and AIS D to C
and back to D).

Outcome measures during therapy
A numerical overview of the absolute outcome measures is given in Table 1, while Fig. 4 pres-
ents the course of the changes in the walking test results relative to baseline as a graph.

The primary outcome measure, WISCI II, showed overall significant results (p< 0.0006)
and increased from 12 (9 to 16) to 16 (15 to 16) (baseline to 8 weeks therapy; median

Table 1. Numerical summary of outcome measures from 6 visits.

Visit Baseline 1 Baseline 2 Baseline 3 Mean /
Median Baseline*

4 weeks
therapy

8 weeks
therapy

8 weeks
therapyb, N =
10

Follow-up(20
weeks)b, N =
10

Outcome
measure

WISCI II [score]a 12 (9–16) 12 (9–16) 12 (9–16) 12 (9–16) 16 (11.75–
16); {24}

16 (15–16);
{24}

16 (12–18.25) 14 (11.25–16)

MAS [score]a 2 (0–9) 1 (0–4) 2 (0–4.5);
{24}

1 (0–6.33) 0 (0–6) 1 (0–4.5);
{24}

0 (0–8.25) 1 (0–7.0)

10MWT (sss) [m/s] 0.37 ± 0.27 0.36 ± 0.24 0.37 ± 0.24 0.37 ± 0.25 0.42 ±
0.30;{24}

0.47 ±
0.27;{24}

0.52 ± 0.35 0.59 ± 0.42

10MWT (ms) [m/s] 0.47 ± 0.43 0.45 ± 0.35 0.46 ± 0.37 0.46 ± 0.38 0.52 ±
0.42; {24}

0.57 ±
0.35; {24}

0.66 ± 0.46 0.71 ± 0.49

6-MIN-TEST [m] 117.04 ±
103.87; {24}

115.63 ±
103.08; {24}

119.46 ±
109.78; {24}

117.38 ± 104.59 142.74 ±
107.01;
{23}

164.74 ±
115.03;
{23}

185.1 ±
154.88

210.70 ±
162.96

TUG [s] 67.71 ±
57.89; {24}

61.60 ±
51.62

56.18 ±
38.34

61.34 ± 48.02 50.83 ±
36.10; {24}

37.21 ±
22.71; {24}

37 ± 25.36 50.80 ± 54.96

LEMS [points] 30.32 ± 9.33 29.72 ± 8.99 29.92 ± 9.24 29.99 ± 8.97 33.36 ±
10.87

36.42 ±
9.77; {24}

35.1 ± 11.28 33.70 ± 11.49

MS L2 [points] 7.48 ± 1.05 7.32 ± 1.35 6.84 ± 1.46 7.21 ± 1.13 7.76 ± 0.93 7.88 ± 1.20 8.1 ± 1.37 8.20 ± 1.69

MS L3 [points] 7.60 ± 1.32 7.36 ± 1.70 7.48 ± 1.42 7.48 ± 1.24 8.40 ± 1.58 8.52 ± 1.56 9.1 ± 0.99 8.60 ± 1.51

MS L4 [points] 4.84 ± 3.21 4.68 ± 3.22 5.04 ± 3.36 4.85 ± 3.14 5.80 ± 3.56 6.48 ± 3.33 6.7 ± 3.30 6.00 ± 3.37

MS L5 [points] 5.04 ± 3.61 4.96 ± 3.48 5.00 ± 3.42 5.00 ± 3.44 5.44 ± 3.63 6.08 ± 3.98 5.1 ± 4.58 5.00 ± 4.55

MS S1 [points] 5.16 ± 3.22 5.32 ± 3.18 5.60 ± 3.11 5.36 ± 3.02 6.24 ± 3.46 6.80 ± 3.34 6.1 ± 3.87 5.90 ± 4.01

Mean ± standard deviation of Walking Index for Spinal Cord Injury II (WISCI II), modified Ashworth scale (MAS), 10-Meter Walk Test (10MWT)—self-

selected speed (sss) and maximum speed (ms), six-minute walk test (6-MIN-TEST), Timed Up and Go Test (TUG) and lower extremity motor scores

(LEMS) are listed chronologically. Segmental motor scores (MS) for myotomes L2—S1 are also provided. Sample sizes are displayed in “{}” where they

deviate from N = 25.
aMedian and 25%-75% quartiles are given for ordinal scales eg, WISCI II and MAS.
bAs follow-up data have a sample size of N = 10 the corresponding subset of patients within the 8-week therapy assessment is presented for

better comparison.

doi:10.1371/journal.pone.0119167.t001
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(interquartile range (IQR))). Nine participants (2/7 AIS C, 7/18 AIS D) were less dependent on
walking aids after therapy than before. A qualitative analysis of the AIS subgroups revealed
that subjects classified as AIS C show a trend towards a higher improvement than those classi-
fied as AIS D (median of increase from baseline to end of therapy in AIS C = 7 and in AIS
D = 4). Post hoc tests in WISCI II revealed a significantly (�P = 0.0352, ± 0.0035) higher WISCI
II level after 8 weeks of training compared to baseline, with a positive tendency (�P = 0.1470, ±
0.0504) already identified after 4 weeks.

The results of the 10MWT for both self-selected (139.4% ± 35.5%; 8-weeks assessment) and
maximum (143.1% ± 40.6%; 8-weeks assessment) speed conditions showed a significant overall
improvement (both p< 0.0001) in short-distance walking velocity. Post hoc analysis revealed
a significant increase of self-selected (�P = 0.0015 ± 0.0006) and maximum (�P = 0.0042, ±
0.0054) walking speed between baseline and end of therapy. Moderate improvements are al-
ready visible between baseline and 4-weeks assessments (�P = 0.0317 ± 0.0156 for self-selected
speed and �P = 0.0497 ± 0.0269 for maximum speed). Moreover, self-selected speed increased
significantly (p = 0.0227) between week 4 and 8. Endurance estimated with the 6-MIN-TEST

Fig 4. Overview of all study visits in relation to mean baseline. Percent of the mean baseline ± standard error (SE) along the course of the study in
relation to the mean baseline for (A) Lower extremity motor score (LEMS), (B) Timed Up and Go Test (TUG), (C) 10-MeterWalk Test (10MWT) at maximum
speed (-ms) and self-selected speed (-sss), (D) six-minute walk test (6-MIN-TEST). Horizontal bars mark significant differences (p< 0.05), which were
determined on the basis of the absolute values in Table 1.

doi:10.1371/journal.pone.0119167.g004
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(overall significance p< 0.0001) showed significant improvements in post hoc tests at the end
of therapy (166.6% ± 72.1%, �P = 0.0006 ± 0.0004), as well as during the first half (�P = 0.0019 ±
0.0006) and the second half of the therapy period (week 4 to week 8, p = 0.0026). Outcomes for
the TUG were overall significant (p< 0.0001). Time needed to perform the TUG decreased
considerably to 71.2% ± 18.0% over the course of the 8 weeks of therapy (�P = 0.0004 ± 0). Sig-
nificant differences in the time needed to perform the TUG were also found between baseline
and 4-weeks assessment and 4-weeks and 8-weeks assessment (�P = 0.0097 ± 0.0132 and p =
0.0004, respectively).

There were significant overall results in LEMS (p< 0.0001). Post hoc analysis showed sig-
nificant (�P = 0.0001 ± 0) increases in LEMS throughout the entire training phase, up to
120.5% ± 9.3% at the 8-weeks assessment. Post hoc analysis revealed a significant improvement
in the strength of key muscles from baseline to 4 weeks (�P = 0.0002 ± 0.0001) and 8 weeks (�P =
0.0001 ± 0) of therapy and between 4 and 8 weeks of therapy (p = 0.0054).

The MAS of all study participants did not show any significant differences over the course
of the therapy (p = 0.2379). However, in the 7 participants in whom spasticity was present (de-
fined by a mean MAS> 4) at baseline (median at baseline: 16 (IQR 9.5 to 16)), a trend towards
decreased spasticity (median: -3 (IQR-5.5 to -1.5)) was observed.

Two temporary conversions in the AIS (B to C and back to B and D to C and back to D)
were detected during the therapy (onset, 4 weeks, 8 weeks) period [49]. The neurological level
of injury remained within ± 2 segments referenced to baseline in all participants.

Follow-up examinations
Baseline and follow-up assessments (Fig. 3) were scheduled at the spinal cord injury center,
while tests performed after 4 and 8 weeks of training were conducted at the participants’
homes. Accordingly, the follow-up assessment was associated with significant travel efforts for
the participants. Ten individuals attended the follow-up assessment. We performed a non-con-
firmatory descriptive subgroup analysis to search for differences in outcome measures between
the groups of “follow-up attendees” and “non-attendees”. Differences between these subgroups
were found only in the WISCI II assessment with attendees of the follow-up visit showing 1) a
much higher relative improvement at end of therapy (Fig. 5A) and 2) a much lower absolute
baseline level than non-attendees (Fig. 5B).

Analysis of the WISCI II follow-up assessments shows that after the end of therapy, 1 sub-
ject further improved (9 to 16), 7 remained at the same level and 2 became worse (19 to 5, 16 to
11). Five months after therapy onset, 7 of the 10 follow-up visitors were less dependent on
walking aids compared to baseline.

Patient reported outcome
Individuals were overall satisfied with their training experience (3.80 ± 0.85, Fig. 6A). The per-
ception of safety during training was rated high, with a mean score of 4.20 ± 0.77. While move-
ment patterns, foot stimulation and body position during training were rated as good, the
simulation of physiological gait was rated as moderate.

Transfers on the device and back to the wheelchair, as well as fastening and releasing leg
straps were rated as between moderate and easy (Fig. 6B), whereby transfer and fixation on the
device were rated as to be slightly more difficult (3.58 ± 0.87) than releasing the straps and trans-
fer back to the wheelchair (3.73 ± 1.0). Five individuals, among them two individuals with tetra-
plegia, declared the need for help in the process of mounting and/or dismounting the device.

Study participants were overall satisfied with the outcome of the therapy (Fig. 6C), indicated
by a mean satisfaction score for the category “Therapy outcome” of 3.89 ± 1.49.

Feasibility of At-Home Robotic Locomotion Therapy

PLOS ONE | DOI:10.1371/journal.pone.0119167 March 24, 2015 11 / 19



Discussion
We investigated the safety and efficacy of 5 prototypes of the novel MoreGait robotic locomo-
tor training device, which has been explicitly developed and designed for autonomous use in
the home environment. This is to our knowledge the world’s first locomotor training device
dedicated to this purpose [50].

We found that home-based training with this compact device is feasible and effective, and
could be handled well by the users. A study assessing the safety of the supervised application of
the driven gait orthosis Lokomat in children and adolescents reported 5 adverse events requiring
discontinuation of therapy in about 1.400 training sessions [51]. In more than 800 unsupervised
training sessions of comparable duration with the MoreGait only one device-related adverse
event occurred. In conclusion, the low incidence of device-related adverse events, the non-occur-
rence of any serious adverse event and the overall positive patient reports on safety and usability
show that the MoreGait can be used safely and mainly independently in the home environment
by sensorimotor impaired end users without continuous supervision by clinical experts.

The participants in our study with chronic iSCI showed no signs of neurological or func-
tional recovery during the 4-week baseline period. This clearly demonstrates that the docu-
mented improvements following MoreGait training were therapy related and not spontaneous.
The mean gain of 2.08 ± 3.82 levels in WISCI II clearly exceeds the recently reported clinically
meaningful threshold of 1 level in iSCI [52].

Fig 5. Analysis of theWalking Index for Spinal Cord Injury II (WISCI II) scores of the attendees of the follow-up visits.WISCI II scores displayed as
(A) relative values ± standard error (SE) and (B) absolute values ± SE for participants (N = 10) who attended the follow-up assessment (green) and for
participants (N = 15) who did not attend the follow-up assessment (red).

doi:10.1371/journal.pone.0119167.g005
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The users benefited from the home-based robotic locomotion therapy in a variety of ways.
The dependency on walking aids—a highly relevant issue for individuals with iSCI—was re-
markably reduced in 9 participants after the MoreGait therapy. The importance of this aspect
for the study participants is underlined by the outcome of the descriptive subgroup analysis of
follow-up attendees vs. non-attendees. Attendees of the follow-up assessment had a much
higher increase in WISCI II levels than non-attendees. The therapy-induced gain in WISCI II
levels and not the absolute level at the end of therapy appears to influence participants’motiva-
tion level and, as a consequence, their willingness to participate in the last study assessment.
The fact that the MoreGait therapy was home-based might have a negative impact on the gen-
eral willingness to follow-up attendance compared to studies with inpatient interventions.
However, to confirm the results from this descriptive subgroup analysis, a higher number of
study participants needs to be included.

Fig 6. User survey results. Boxplots showing survey results on a 5 point scale for the categories (A) Training experience, (B) Transfers, fastening and
release, and (C) Therapy outcome. The survey was completed by twenty of the twenty-five participants who finished the MoreGait study. Sample sizes are
displayed in “{}”, where they deviate from N = 20.

doi:10.1371/journal.pone.0119167.g006
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During the therapy period, the participants’ walking ability increased considerably. This
was reflected by improvements in short-distance gait speed (10MWT) by approximately 40%,
endurance (6-MIN-TEST) by roughly 65% and standing up, turning, and sitting down (TUG)
by around 30%. Those improvements were also seen in the 9 individuals, who needed less sup-
port by walking aids over the course of the therapy.

A direct comparison of the study results with other studies is very difficult due to differences
in patient populations (type/severity of lesion, functional status, exclusion of spontaneous re-
covery,) and therapy regimens (frequency, duration) [53, 54]. However, to allow for direct
comparison of results, the inclusion criteria and protocol selected for the MoreGait study were
similar to those used for a study with the Lokomat [26]. The extent of improvement in walking
speed and endurance achieved by MoreGait is comparable to that of supervised clinical gait re-
habilitation with the Lokomat (10MWT: 56%, 6-MIN-TEST: 53%, TUG: 32%). However, a
higher percentage of study participants was less dependent on walking aids after MoreGait
training (MoreGait: 9/25, Lokomat: 2/21). Interestingly, participants in the MoreGait study in-
creased gait speed and endurance during the therapy period in nearly linear fashion, indicating
that MoreGait training performed for longer than 8 weeks might further improve locomotor
function. Harkema et al. assessed the effects of intensive locomotor training, including step
training using body-weight support and manual facilitation on a treadmill followed by over-
ground assessment and community integration, in 196 individuals with chronic iSCI (approxi-
mately the same percentage of one third AIS C and two thirds AIS D participants as in our
study) who underwent at least 20 locomotor training treatment sessions in outpatient rehabili-
tation centers [55]. Although the number of therapy sessions varied extensively, the group of
chronic patients assessed within 1 to 3 years after trauma improved on average 0.11 ± 0.23 m/s
in the 10MWT and 44 ± 71 m in the 6-MIN-TEST. Our participants improved to a similar ex-
tent (10MWT: 0.1 m/s; 6-MIN-TEST: 47 m), although they were not explicitly supervised by
experienced therapists.

A number of studies utilizing body weight-supported training for improving walking in in-
dividuals with SCI have reported improvements in lower-limb strength in patients with chron-
ic SCI that are in the range of our results [56, 57]. The improvements in walking ability could
potentially be attributed only to the significant increase in LEMS. However, the motor scores of
the proximal muscle groups, which are highly relevant for walking function, did not increase
noticeably in the second half of the training period. Yet, locomotor function continued to im-
prove to a similar extent compared to the first 4 weeks of training (Table 1). This points to an
improvement in coordination rather than in muscle strength. Interestingly, the improvements
in distal muscle strength, which mainly contributed to the increase in the total LEMS, are in
the same range within the first and second half of the therapy period, indicating the high thera-
peutic relevance of the stimulative shoe.

There was a trend towards decreased spasticity at the end of therapy in study participants
with a mean MAS at baseline greater than 4. However, this finding has to be interpreted very
carefully due to the low reliability of the MAS to detect subtle changes in spasticity [58].

The following limitations of the study have to be considered: Besides screening of the inter-
nal medical database, study participants were recruited by advertising the study on the univer-
sity hospital’s website and in a magazine for people with disabilities focusing on individuals
with SCI [34]. The recruitment procedure, together with the lack of reimbursement of travel
expenses, may have contributed to a selection bias towards exceptionally motivated individuals.
Considering the high dropout rate, the criterion for dropping out—less than 4x 30 minutes
therapy time per week—was most likely too ambitious.

We did not document the type and focus of concomitant therapies and medication. Al-
though study participants were asked not to modify their physical therapy, unsupervised
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training program, or antispastic medication, it cannot be excluded that changes in the regimes
of these therapies throughout the MoreGait training period contributed to the improvements.
The MoreGait therapy was applied at home as an add-on therapy. Therefore, we cannot ex-
clude that the gait improvements were simply caused by the higher training intensity. On the
other hand, this regimen of use best reflects the intended application scenario, in which More-
Gait is the key component for allowing a higher intensity of gait training at home. Randomized
controlled studies are necessary in the future to show the superiority of the MoreGait training
in comparison to other, more simple home-based therapies.

Due to the safety-driven design of the MoreGait the user is put in a semi-reclined position.
The influence of this non-physiological posture during the locomotion therapy with MoreGait
on balance needs to be determined in future studies.

While baseline and follow-up assessments were performed at the Spinal Cord Injury Center,
the majority of the 4-weeks and 8-weeks assessments took part in the participant’s home envi-
ronment. While no influence of a community environment is reported on the 10MWT, posi-
tive effects are described on the gait endurance assessed by the 6-MIN-TEST [59]. This may
lead to a systematic bias in the results of the 6-MIN-TEST obtained during the therapy period.

The findings of the present study demonstrate that a robotic device reduced to a technical
minimum can be introduced into a feasible, safe and effective gait rehabilitation therapy at
home and thus might influence future robotic gait-rehabilitation strategies. A randomized-
controlled trial investigating the effects of MoreGait therapy in acute iSCI is currently under-
way. Other neurological disease conditions affecting locomotor function may also benefit from
this kind of robotic therapy, and thus warrant future investigation. The MoreGait device repre-
sent a valuable platform for future investigations on systematic identification and ranking of
the therapeutic impact of machine parameters like degree of foot loading, inclination of the
backrest or the prolonged therapy time.

Conclusions
Robotic home-based locomotion therapy with MoreGait allows patients to continue high-fre-
quency training of locomotor function based on principles of activation of spinal locomotor
networks and of motor learning after discharge from rehabilitation centers. The functional im-
provements following 8 weeks of MoreGait therapy in individuals with chronic sensorimotor
iSCI are well within the range of those achieved with complex locomotion robots used at hospi-
tals [26]. The stimulative shoe provides the opportunity to investigate alternative foot-loading
patterns (eg, gait phase-related vibrational patterns), which might be even more effective in ac-
tivating the spinal locomotion network [28]. Of course, other neurological diseases affecting lo-
comotor function may also benefit from this kind of robotic therapy, and thus warrant
future investigation.
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