Supporting Information for *PLoS ONE*

3	Illumina MiSeq sequencing reveals diverse microbial communities of activated sludge										
4	systems stimulated by different aromatics for indigo biosynthesis from indole										
5	Xuwang Zhang, Yuanyuan Qu [*] , Qiao Ma, Zhaojing Zhang, Duanxing Li, Jingwei Wang,										
6	Wenli Shen, E Shen, Jiti Zhou										
7											
8	Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of										
9	Education), School of Environmental Science and Technology, Dalian University of										
10	Technology, Dalian, China										
11											
12	*Corresponding Author										
13	E-mail: <u>qyy@dlut.edu.cn</u> (YQ).										
14											

Group	Time ^a	Samples	Conditions
AS	Т0	A1, A2, A3	Original activated sludge
	T1	B1, B2, B3, B4, B5	
G1	T2	B6, B7, B8	Induced with naphthalene and indole
	Т3	B9, B10, B11	
	T1	C1, C2, C3, C4, C5	
G2	T2	C6, C7, C8	Induced with phenol and indole
	T3	C9, C10, C11	
	T1	D1, D2, D3, D4, D5	
G3	T2	D6, D7, D8	Induced only with indole
	Т3	D9, D10, D11	

Table A Group setup of the experiment in this study.

^aT0 stands for the operation period before domestication, and samples were selected from the
original activated sludge; T1 stands for 0-20 days, and samples were selected at 0th, 3rd, 6th,
9th and 12th day; T2 stands for 20-40 days, and samples were selected at 21th, 27th and 33th
day; T3 stands for 40-69 days, and samples were selected at 57th, 63th and 69th day.

Groups	Shannon Index (H) ^a	Simpson Index (D) ^b	Chao1 ^c	OTU
AS	5.90	0.011	2838	2553
G1	4.15	0.054	2752	2110
G2	4.74	0.025	3188	2480
G3	4.66	0.029	2740	2168

21 **Table B** Richness and diversity indices of the original AS and three groups.

²² ^aShannon index (H): a higher value represents more diversity.

23 ^bSimpson Index (D): a higher value represents less diversity.

²⁴ ^cChao1 richness estimator: a higher number indicates higher richness.

Data sets	Ado	onis ^b	ANO	SIM ^c	MRPP ^d		
Data Sets	R ²	Р	R	Р	δ	Р	
T1 stage vs. T2 stage	0.108	0.008	0.169	0.031	0.632	0.006	
T1 stage vs. T3 stage	0.173	0.001	0.437	0.001	0.633	< 0.001	
T2 stage vs. T3 stage	0.149	0.011	0.282	0.015	0.609	0.006	
G1 vs. G2	0.164	0.001	0.366	0.001	0.631	< 0.001	
G1 vs. G3	0.254	0.001	0.606	0.001	0.576	< 0.001	
G2 vs. G3	0.189	0.001	0.517	0.001	0.581	< 0.001	

26 **Table C** Significance tests of the differences of the microbial communities^a.

^aDifferent statistical tests were used with Bray-Curtis distances, and *P* values were of
corresponding significance tests.

²⁹ ^bAdonis, permutational multivariate analysis of variance with the Adonis function.

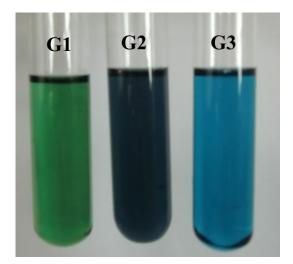
30 ^cANOSIM, analysis of similarity.

³¹ ^dMRPP, multiresponse permutation procedure.

Dhadaam	Class	Famila	Canua	G1		G2		G3	
Phylum	Class	Family	Genus	r	P value ^a	r	P value	r	P value
Proteobacteria	-	-	-	0.9890	<0.0001	0.8306	0.0029	0.9582	<0.0001
Proteobacteria	Betaproteobacteria	Comamonadaceae	Comamonas	-0.1354	0.7092	-0.3654	0.2991	0.1118	0.7585
Proteobacteria	Betaproteobacteria	Comamonadaceae	Diaphorobacter	0.0703	0.8470	0.3487	0.3234	0.6063	0.0631
Proteobacteria	Betaproteobacteria	Alcaligenaceae	Pusillimonas	0.6029	0.0650	0.9500	<0.0001	0.5292	0.1157
Proteobacteria	Alphaproteobacteria	Rhodobacteraceae	Paracoccus	0.5497	0.0997	0.2645	0.4602	0.4012	0.2505
Proteobacteria	Alphaproteobacteria	Phyllobacteriaceae	Aquamicrobium	0.5110	0.1312	-0.0083	0.9818	0.6862	0.0284
Proteobacteria	Gammaproteobacteria	Pseudomonadaceae	Pseudomonas	-0.8770	0.0009	-0.2730	0.4454	-0.5692	0.0859
Deinococcus-Thermus	Truepera	Trueperaceae	Truepera	-0.3079	0.3868	-0.4780	0.1623	0.9104	0.0003
Proteobacteria	Betaproteobacteria	Alcaligenaceae	Castellaniella	-0.1272	0.7262	0.7943	0.0061	0.8208	0.0036
Proteobacteria	Alphaproteobacteria	Phyllobacteriaceae	Mesorhizobium	0.7105	0.0213	-0.1870	0.6049	-0.5030	0.1384
Proteobacteria	Alphaproteobacteria	Caulobacteraceae	Brevundimonas	-0.1522	0.6747	0.9039	0.0003	0.9338	0.0001
Proteobacteria	Alphaproteobacteria	Sphingomonadaceae	Sphingosinicella	0.6310	0.0504	0.9379	0.0001	0.9736	<0.0001
Proteobacteria	Betaproteobacteria	Rhodocyclaceae	Dechloromonas	-0.4604	0.1806	-0.7929	0.0062	-0.7566	0.0113
Chloroflexi	Anaerolineae	Anaerolineaceae	Longilinea	-0.9557	<0.0001	-0.6476	0.0429	-0.7071	0.0222
Bacteroidetes	Sphingobacteria	Chitinophagaceae	Ferruginibacter	-0.4813	0.1590	-0.5955	0.0693	-0.9148	0.0002

Table D Correlations between the relative abundance of microbial community compositions and indigo yields.

 $^{a}P < 0.05$ indicated the correlation was significant.


OTU	Phylum	G1			G2			G3		
		Abundance ^a	r	P value ^b	Abundance	r	P value	Abundance	r	P value
OTU_129	Proteobacteria	13.50	0.1025	0.7781	5.53	0.5243	0.1198	1.27	0.8813	0.0008
OTU_2732	Proteobacteria	1.13	0.2982	0.4027	1.62	0.6669	0.0352	0.06	0.0996	0.7842
OTU_3338	Proteobacteria	0.80	0.4881	0.1523	1.67	0.5302	0.1149	2.29	-0.4118	0.2371
OTU_863	Proteobacteria	1.72	-0.1816	0.6157	0.56	0.8933	0.0005	4.40	0.2602	0.4678
OTU_300	Bacteroidetes	1.21	-0.9208	0.0002	3.09	-0.7680	0.0095	1.86	-0.5832	0.0768
OTU_473	Bacteroidetes	1.68	-0.9703	0.0000	0.08	-0.8754	0.0009	1.22	-0.7791	0.0079

35 **Table E** Correlations between the relative abundance of the major unclassified OTU and indigo yields.

³⁶ ^aThe average abundance of the OTU in each group was present in the table, and only the OTU with the abundance higher than 1% of the total

37 sequences in more than two groups was selected.

 $^{b}P < 0.05$ indicated the correlation was significant.

- 39
- Fig A. Color of the products produced by the three groups. The reaction mixture were centrifuged at $10,000 \times g$ for 5 min, and the pellets were re-suspended in an equal volume of dimethylsulfoxide for the extraction of indigoid pigments.

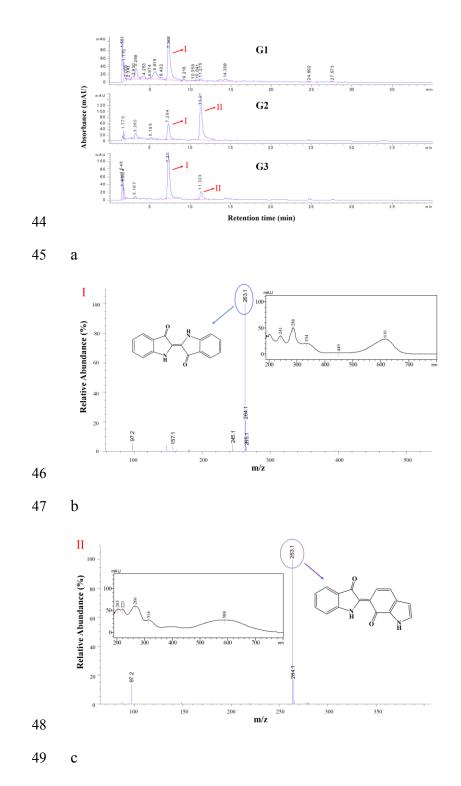
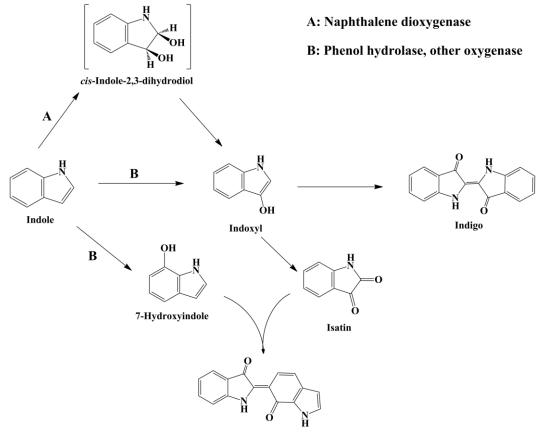
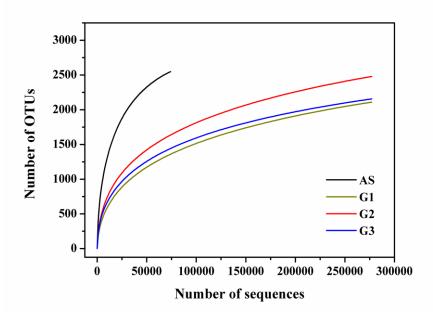
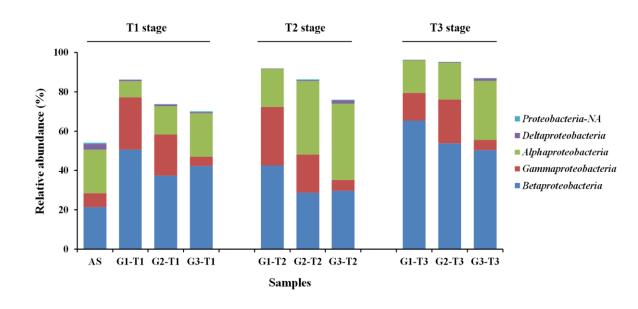




Fig B. HPLC-MS analysis of the products formed by the three groups. a. HPLC spectra
of the products. b. Mass spectra of the product indigo. c. Mass spectra of the purple product.
The pigments of I and II were indicated by the arrows, corresponding to indigo and purple
product, 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one, respectively.

2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one


Fig C. Proposed pathways for the production of indigoids from indole by the activated sludge systems. Indole can be hydroxylated to form indoxyl by oxygenases A and B, which may be further oxidized to form isatin. Condensation of two molecules of indoxyl by air oxidation will lead to the production of indigo. Besides, indole can be also oxidized by oxygenase B to form 7-hydroxyindole, which can react with isatin to form 2-(7-oxo-1H-indol-6(7H)-ylidene) indolin-3-one. Oxygenase A may be naphthalene dioxygenase in G1; B may be phenol hydrolase in G2 or other oxygeases in G3.

64

Fig D. Rarefaction curves base on Illumina MiSeq sequencing of microbial communities. The OTUs were defined by 3% distances. The rarefaction curve of AS was derived from 3 samples, while those of each group were from 11 samples. The detailed group setup was

68 presented in Table A in S1 File.

71 Fig E. Relative abundance of *Proteobacteria* subdivisions in each group at different

72 stages.