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There still was a significant improvement in the strength 
of even the epoxy filled printed shells when the shells were 
printed in the preferred orientation. This shows that it is still 
beneficial to consider the orientation of the print fibers when 
using this technique to strengthen 3D printed parts. 
 One limitation to the fill compositing method is the 
necessity for the parts to be printed with non-porous internal 
voids. Some FDM printer settings will create porous parts 
that do not properly block flow of the resin into sparse fill 
areas of the part. It is necessary to adjust printer setting, 
specifically with regard to raster fill, to prevent porous 
cavity surfaces. 
 Within this investigation of fill compositing, the authors 
have focused on the use of Epoxy resin as the compositing 
material of choice. In future work, the authors plan to 
investigate more materials including extremely tough 
urethanes, and resin additives including chopped glass 
fibers. The bond strength between the filled resins and the 
ABS printed material will also be studied. 
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