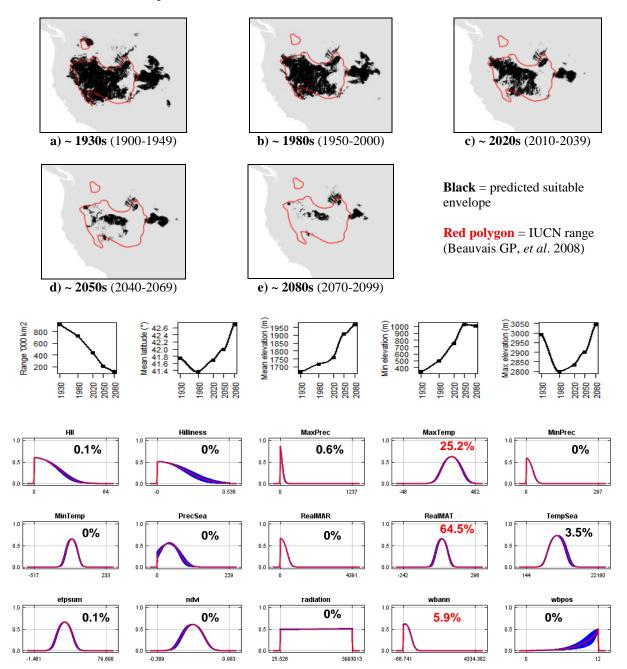
S2 Supporting Information.

Species accounts (#1-89)

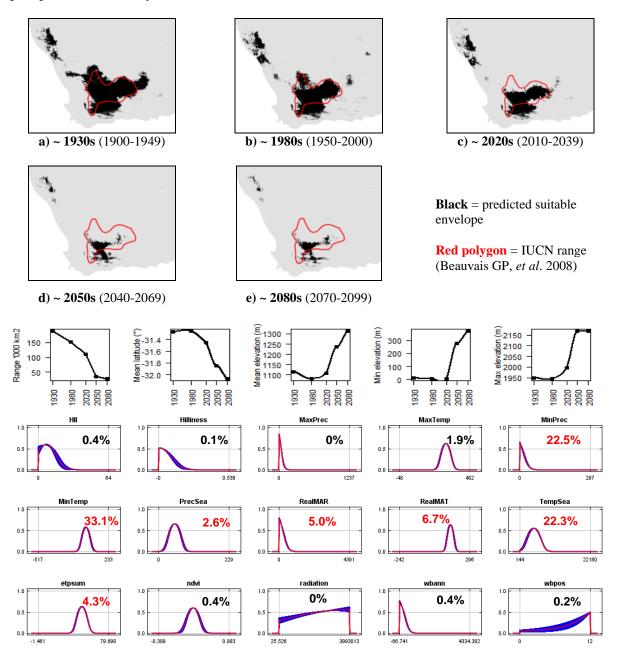
Key for response curves


Abbreviation	Description
HII	Human Influence index
Hilliness	Surface Roughness index
MaxPrec	Maximum precipitation
MaxTemp	Maximum temperature
MinPrec	Minimum precipitation
MinTemp	Minimum temperature
PrecSea	Precipitation seasonality
RealMAR	Mean annual precipitation
RealMAT	Mean annual temperature
TempSea	Temperature seasonality
etpsum	Annual evapotranspiration
ndvi	Normalised difference vegetation index
radiation	Solar radiation
wbann	Annual water balance
wbpos	Number of months with a positive water balance

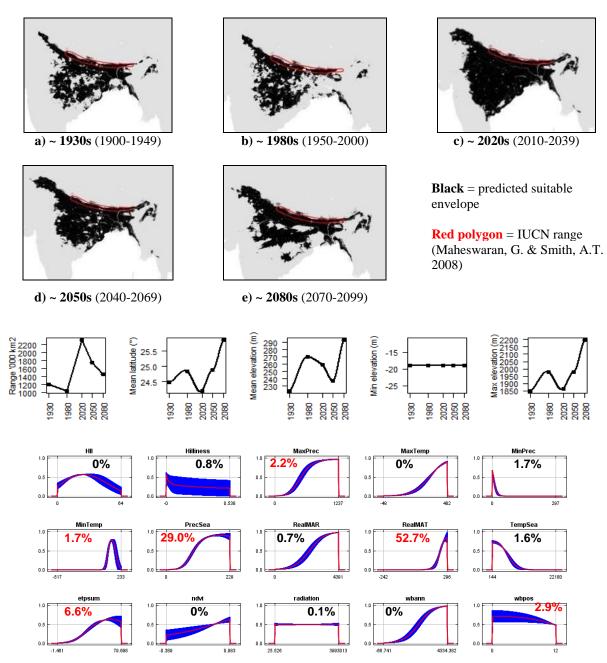
The past and current occurrence records underlying these species accounts can be viewed on http://lagomorphclimatechange.wordpress.com/.

Species account #1 - Pygmy rabbit (*Brachylagus idahoensis*) n = 39 Expert: Penny Becker, Washington Dept. of Fish & Wildlife, USA Expert evaluation: Medium Data: Modern and historic Envelope: Climatic and habitat Dispersal distance: 15km/year (Expert) Status: MODELLABLE; Included in final analysis: √

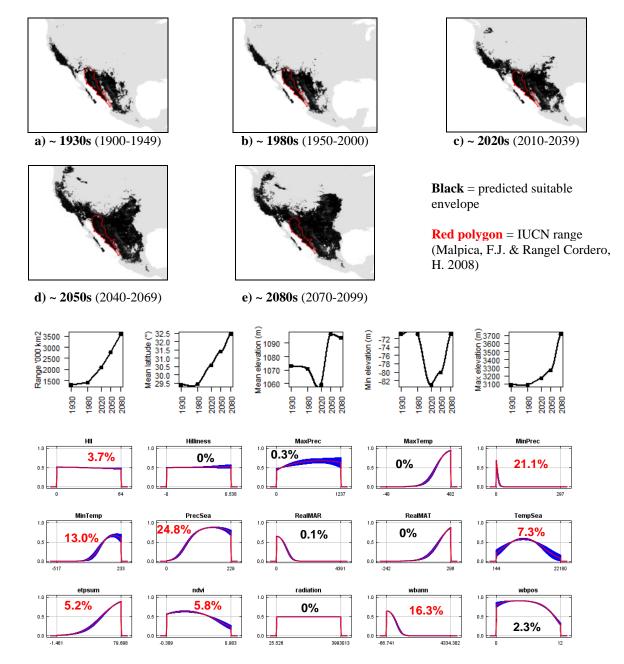
Model evaluation metric		
AUC	0.95	
Omission rate	0.10	
Sensitivity	0.90	
Specificity	1.00	
Proportion correct	1.00	
Kappa	0.75	
True Skill Statistic	0.90	


Summary: The Pygmy rabbit's bioclimatic envelope is predicted to decline by 87% with a 1° mean latitudinal poleward shift and mean increase in elevation of ~300m driven predominately by an increase in mean minimum elevation (>600m) with little change in mean maximum elevation (~50m). 95% of the permutation importance of the model was contributed to by mean annual temperature (64.5%), maximum temperature (25.2%) and annual water balance (5.9%).

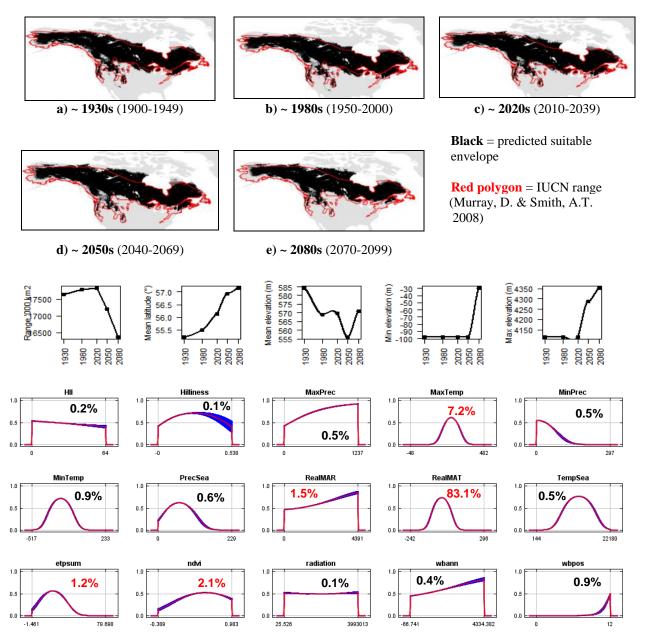
#2 - Riverine rabbit (Bunolagus monticularis)
n = 109
Status: Kai Collins, University of Pretoria, South Africa
Expert evaluation: Good
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 7.5km/year (Expert)
Status: MODELLABLE; Included in final analysis: $$


Model evaluation metric		
AUC	0.98	
Omission rate	0.03	
Sensitivity	0.97	
Specificity	1.00	
Proportion correct	1.00	
Карра	0.85	
True Skill Statistic	0.97	

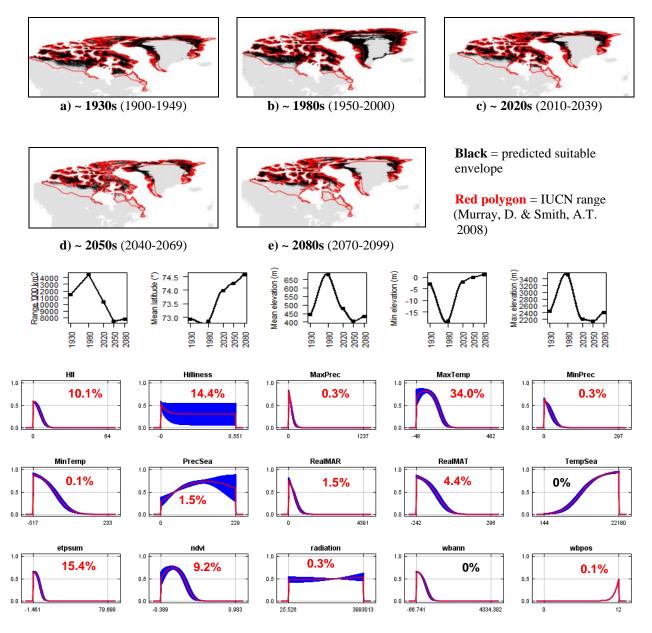
Summary: The Riverine rabbit's bioclimatic envelope is predicted to decline by 85% with a $\sim 1^{\circ}$ mean latitudinal poleward shift and mean increase in elevation of ~ 200 m driven by similar increases in both minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by minimum temperature (33.1%) and precipitation (22.5%), temperature seasonality (22.3%), mean annual temperature (6.7%) and precipitation (5.0%), annual evapotranspiration (4.3%) and precipitation seasonality (2.6%).


	Model evaluation 1	<u>netric</u>
#3 - Hispid hare (Caprolagus hispidus)	AUC	0.97
	Omission rate	0.06
n = 18	Sensitivity	0.94
Expert: Gopinathan Maheswaran, Zoological Survey of India	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
Data: Modern and historic	Карра	0.81
Envelope: Climatic and habitat	True Skill Statistic	0.94
Dispersal distance: 5km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

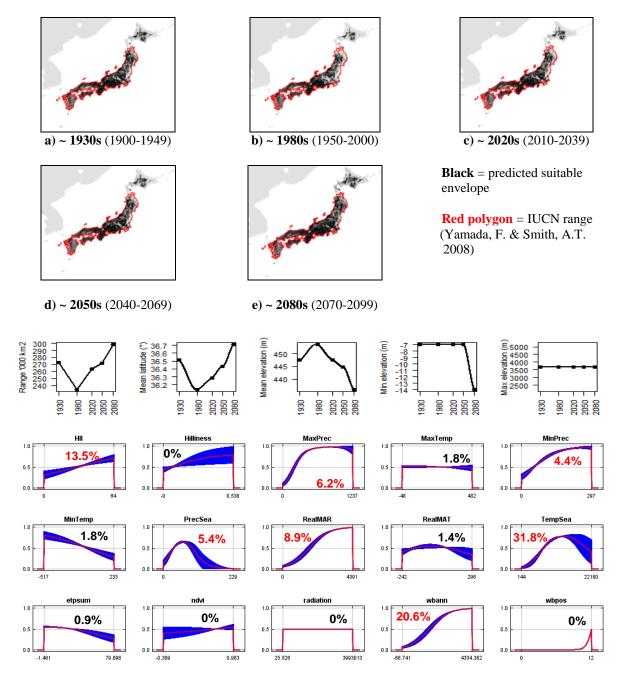
Summary: The Hispid hare's bioclimatic envelope is predicted to increase by 21% with a $\sim 1.5^{\circ}$ mean latitudinal poleward shift and mean increase in elevation of ~ 70 m driven by increases in maximum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (52.7%), precipitation seasonality (29.0%), annual evapotranspiration (6.6%), number of months with a positive water balance (2.9%), maximum precipitation (2.2%) and minimum temperature (1.7%).


#4 – Antelope jackrabbit (Lepus alleni)	Model evaluation metric	
n = 32	AUC	0.91
Expert: Paul Krausman, University of Montana	Omission rate	0.16
1	Sensitivity	0.84
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.98
Envelope: Climatic and habitat	Карра	0.26
Dispersal distance: 25km/year (Expert)	True Skill Statistic	0.83
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Antelope jackrabbit's bioclimatic envelope is predicted to increase by 172% with a \sim 3° mean latitudinal poleward shift and mean increase in elevation of \sim 20m driven by increases in maximum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (24.8%), minimum precipitation (21.1%), annual water balance (16.3%), minimum temperature (13.0%), temperature seasonality (7.3%), normalised difference vegetation index (5.8%), annual evapotranspiration (5.2%) and human influence index (3.7%).

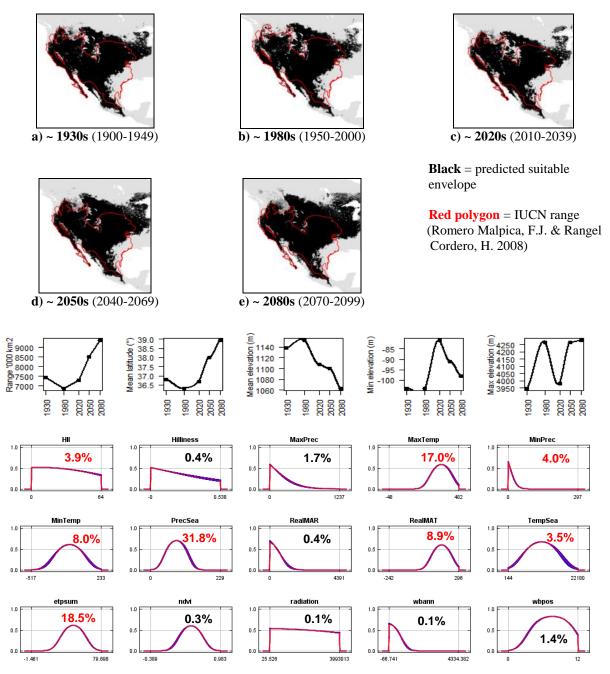

#5 – Snowshoe hare (Lepus americanus)	Model evaluation metric	
	AUC	0.95
n = 506	Omission rate	0.07
Expert: Charles Krebs, University of British Colombia &	Sensitivity	0.93
Rudy Boonstra, University of Toronto Scarborough	Specificity	0.97
Expert evaluation: Good	Proportion correct	0.97
Data: Only modern	Карра	0.72
•	True Skill Statistic	0.90
Envelope: Climatic and habitat		
Dispersal distance: 24km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Snowshoe hare's bioclimatic envelope is predicted to decline by 7% with a $\sim 2^{\circ}$ mean latitudinal poleward shift and mean decrease in elevation of ~ 10 m, but with increases in both minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (83.1%), maximum temperature (7.2%), normalised difference vegetation index (2.1%), mean annual precipitation (1.5%) and annual evapotranspiration (1.2%).

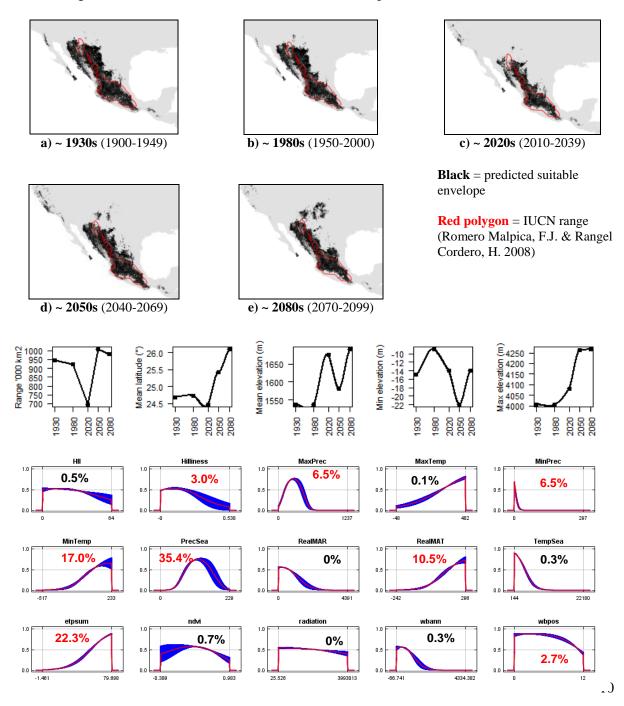

#6 – Arctic hare (Lepus arcticus)	Model evaluation metric	
	AUC	0.97
n = 18	Omission rate	0.06
Expert: David Gray, Grayhound Information Services	Sensitivity	0.94
Expert evaluation: Poor	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.36
Envelope: Climatic and habitat	True Skill Statistic	0.94
Dispersal distance: 2km/year (Chapman & Flux, 1990)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Arctic hare's bioclimatic envelope is predicted to decline by 30% with a $\sim 2^{\circ}$ mean latitudinal poleward shift and mean decrease in elevation of ~10m driven by decreases in maximum elevation. 95% of the permutation importance of the model was contributed to by maximum temperature (34.0%), annual evapotranspiration (15.4%), surface roughness index (14.4%), human influence index (10.1%), normalised difference vegetation index (9.2%), mean annual temperature (4.4%), precipitation seasonality (1.5%), mean annual precipitation (1.5%), maximum precipitation (0.3%), minimum precipitation (0.3%), solar radiation (0.3%), minimum temperature (0.1%) and number of months with a positive water balance (0.1%).

#7 – Japanese hare (Lepus brachyurus)	Model evaluation r	Model evaluation metric	
	AUC	0.99	
n=9	Omission rate	0.00	
Expert: Koji Shimano, Shinshu University, Japan	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.43	
Envelope: Climatic and habitat	True Skill Statistic	0.99	
Dispersal distance: 1km/year (Expert)			
Status: MODELLABLE; Included in final analysis: $$			


Summary: The Japanese hare's bioclimatic envelope is predicted to increase by 9% with no latitudinal poleward shift and a mean increase in elevation of ~10m driven by a decrease in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (31.8%), annual water balance (20.6%), human influence index (13.5%), mean annual precipitation (8.9%), maximum precipitation (6.2%), precipitation seasonality (5.4%) and minimum precipitation (4.4%).

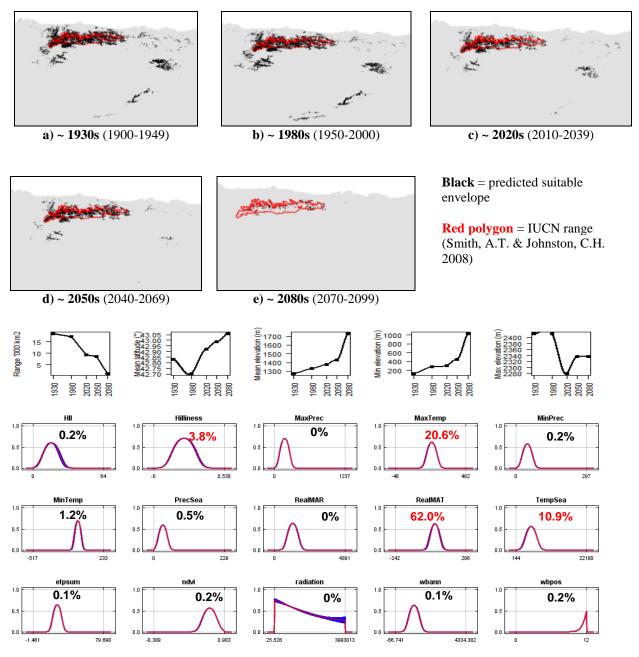
#8 – Black-tailed jackrabbit (Lepus californicus)
n = 970
Expert: Alejandro Velasquez, UNAM-Canada
Expert evaluation: Medium
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 18.9km/year (N.Am. leporids, range 2-25)
Status: MODELLABLE; Included in final analysis: $$


Model evaluation metric		
AUC	0.93	
Omission rate	0.07	
Sensitivity	0.93	
Specificity	0.94	
Proportion correct	0.94	
Карра	0.69	
True Skill Statistic	0.87	

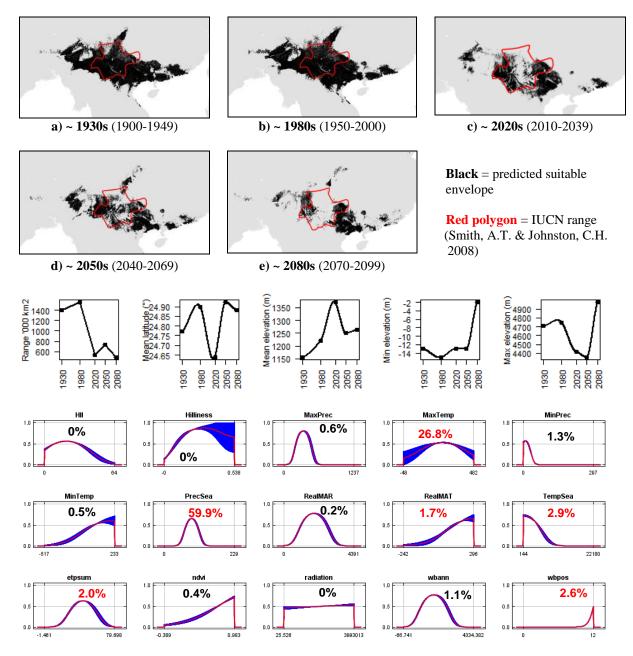
Summary: The Black-tailed jackrabbit's bioclimatic envelope is predicted to decline by 25% with a $\sim 2^{\circ}$ mean latitudinal poleward shift and mean decrease in elevation of ~ 75 m, but with increases in both minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (31.8%), annual evapotranspiration (18.5%), maximum temperature (17.0%), mean annual temperature (8.9%), minimum temperature (8.0%), minimum precipitation (4.0%), human influence index (3.9%) and temperature seasonality (3.5%).


#9 – White-sided jackrabbit (Lepus callotis)	Model evaluation metric	
n = 37	AUC	0.97
	Omission rate	0.05
Expert: Jennifer Frey, New Mexico State University	Sensitivity	0.95
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.36
1	True Skill Statistic	0.93
Dispersal distance: 18.9km/year (N.Am. leporids, range 2-25)		
Status: UNMODELLABLE; Included in final analysis: X		

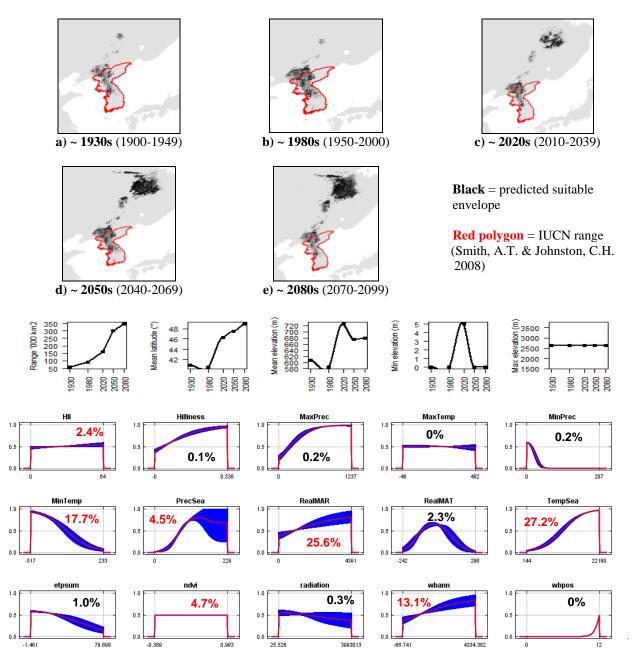
Summary: The White-sided jackrabbit's bioclimatic envelope is predicted to increase by 3% with a $\sim 1^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 150 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (35.4%), annual evapotranspiration (22.3%), minimum temperature (17.0%), mean annual temperature (10.5%), minimum precipitation (6.5%), maximum precipitation (6.5%), surface roughness index (3.0%) and number of months with a positive water balance (2.7%).


#10 – Cape hare (Lepus capensis)	Model evaluation metric	
n = 231	AUC	0.93
	Omission rate	0.10
Expert: John Flux, IUCN Lagomorph Specialist Group	Sensitivity	0.90
Expert evaluation: Poor	Specificity	0.97
Data: Modern and historic	Proportion correct	0.97
Envelope: Climatic and habitat	Карра	0.56
Dispersal distance: 35km/year (Expert)	True Skill Statistic	0.87
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Cape hare's bioclimatic envelope is predicted to decrease by 45% with $\sim 2^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 330 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (33.1%), minimum precipitation (29.6%), maximum temperature (9.7%), human influence index (7.2%), normalised difference vegetation index (4.6%), minimum temperature (3.2%), number of months with a positive water balance (2.9%), maximum precipitation (2.2%), mean annual precipitation (2.1%) and precipitation seasonality (2.0%).

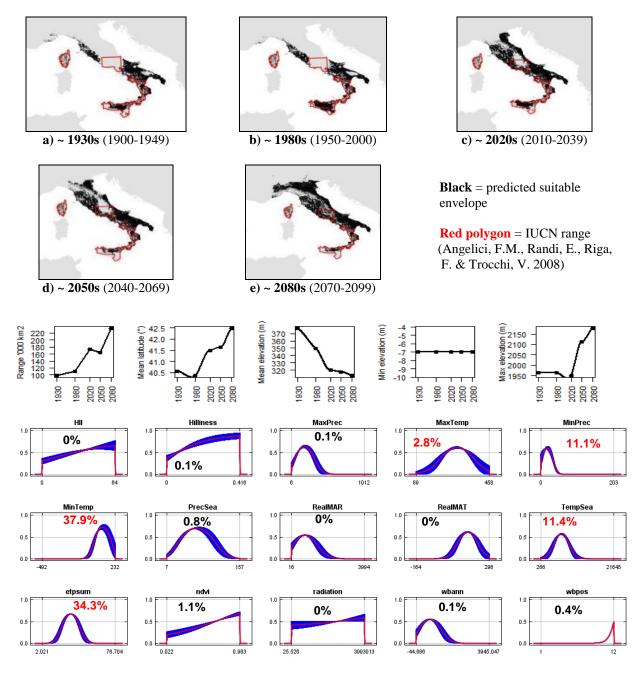

#11 – Broom hare (Lepus castroviejoi)	Model evaluation metric	
n = 164	AUC	0.94
	Omission rate	0.11
Expert: Pelayo Acevedo, University of Porto	Sensitivity	0.89
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.80
Dispersal distance: 1km/year (Expert)	True Skill Statistic	0.89
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Broom hare's bioclimatic envelope is predicted to decrease by 90% with a $\sim 0.2^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 450 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (62.0%), maximum temperature (20.6%), temperature seasonality (10.9%) and surface roughness index (3.8%).


#12 – Yunnan hare (Lepus comus)	Model evaluation metric	
	AUC	0.92
n = 59	Omission rate	0.15
Expert: Weihe Yang, Institute of Zoology, Chinese Academy	Sensitivity	0.85
of Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
Data: Modern and historic	Карра	0.67
	True Skill Statistic	0.84
Envelope: Climatic and habitat		
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

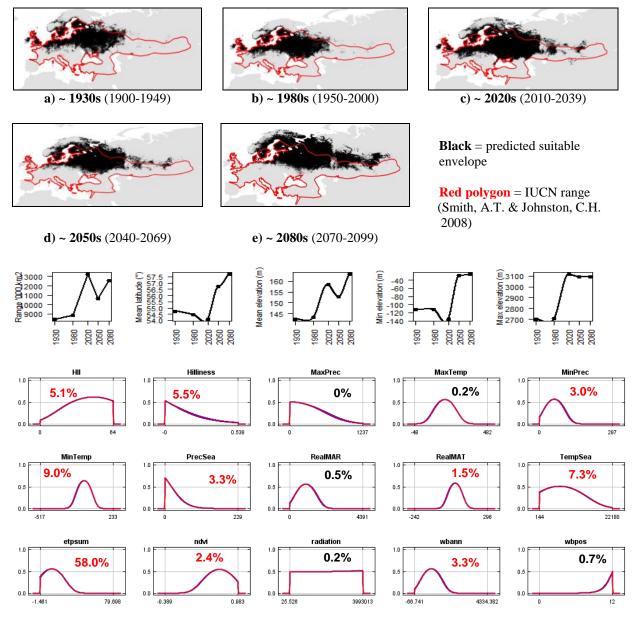
Summary: The Yunnan hare's bioclimatic envelope is predicted to decrease by 65% with a $\sim 0.1^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 100 m driven by both increases in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (59.9%), maximum temperature (26.8%), temperature seasonality (2.9%), number of months with a positive water balance (2.6%), annual evapotranspiration (2.0%) and mean annual temperature (1.7%).

#13 – Korean hare (Lepus coreanus)	Model evaluation metric	
	AUC	0.99
n = 6	Omission rate	0.00
Expert: Weihe Yang, Institute of Zoology, Chinese Academy	Sensitivity	1.00
of Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
	Карра	0.86
Data: Modern and historic	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

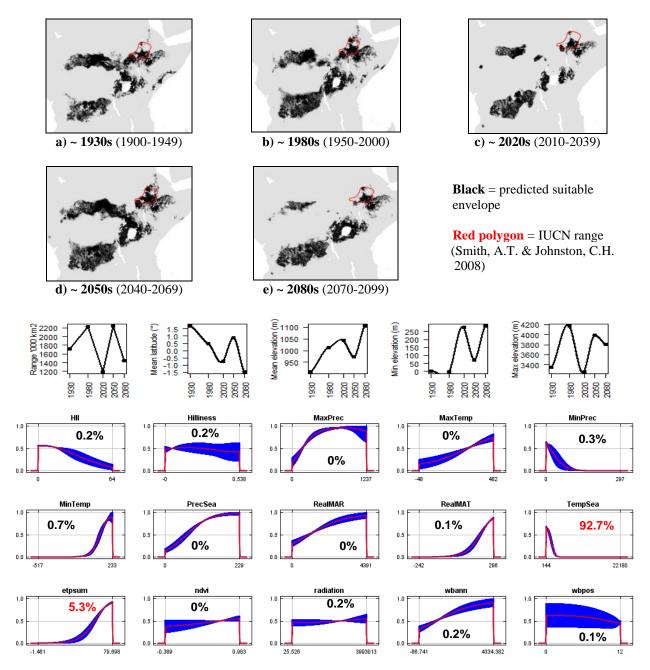

Summary: The Korean hare's bioclimatic envelope is predicted to increase by 500% with a $\sim 8^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 70 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (27.2%), mean annual precipitation (25.6%), minimum temperature (17.7%), annual water balance (13.1%), normalised difference vegetation index (4.7%), precipitation seasonality (4.5%) and human influence index (2.4%).

#14 – Apennine hare (Lepus corsicanus)	Model
n = 59	AUC Omission
Expert: Francesco Angelici, Italian Foundation of Vertebrate	Sensitivity
Zoology	Specificity
Expert evaluation: Medium	Proportion
Data: Only modern	Kappa True Skill
Envelope: Climatic and habitat	
Dispersal distance: 3km/year (Expert)	
Status: MODELLABLE; Included in final analysis: $$	

Model evaluation metricAUC0.99Omission rate0.00Sensitivity1.00Specificity0.99Proportion correct0.99Kappa0.53True Skill Statistic0.99

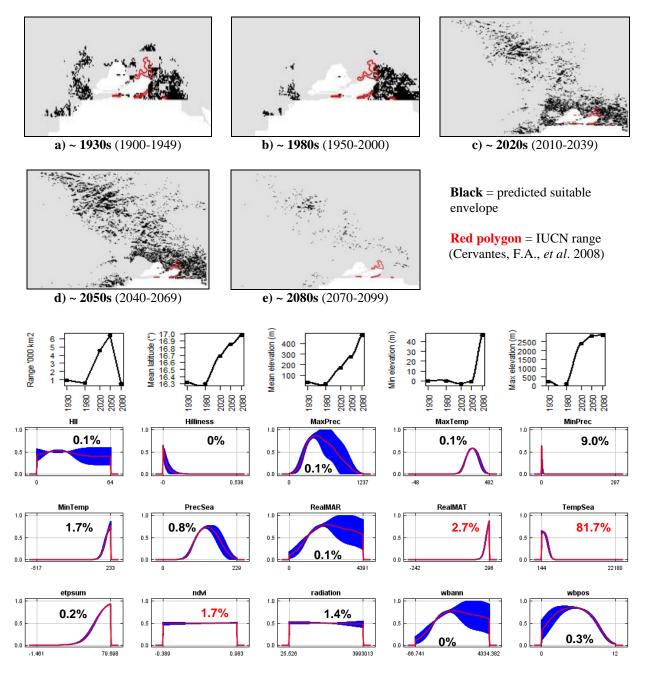

Summary: The Apennine hare's bioclimatic envelope is predicted to increase by 125% with a $\sim 2^{\circ}$ mean latitudinal poleward shift and a mean decrease in elevation of ~ 60 m. 95% of the permutation importance of the model was contributed to by minimum temperature (37.9%), annual evapotranspiration (34.3%), temperature seasonality (11.4%), minimum precipitation (11.1%) and maximum temperature (2.8%).

#15 – European hare (<i>Lepus europaeus</i>)-native range only	_
n = 6,186	A
Expert: Neil Reid, Queen's University Belfast	O Se
Expert evaluation: Medium	S
Data: Only modern	P
Envelope: Climatic and habitat	K
Dispersal distance: 2km/year (Chapman & Flux, 1990)	T
Status: MODELLABLE; Included in final analysis: $$	

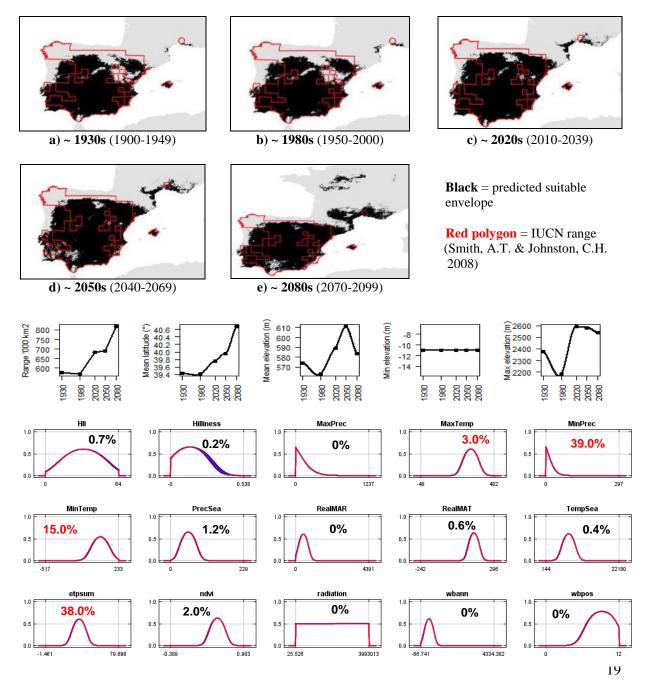

Model evaluation metric		
AUC	0.81	
Omission rate	0.07	
Sensitivity	0.93	
Specificity	0.69	
Proportion correct	0.78	
Карра	0.57	
True Skill Statistic	0.62	

Summary: The European hare's bioclimatic envelope is predicted to increase by 50% with a $\sim 3^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 20 m driven by an increase in both maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (58.0%), minimum temperature (9.0%), temperature seasonality (7.3%), surface roughness index (5.5%), human influence index (5.1%), precipitation seasonality (3.3%), annual water balance (3.3%), minimum precipitation (3.0%), normalised difference vegetation index (2.4%) and mean annual temperature (1.5%).

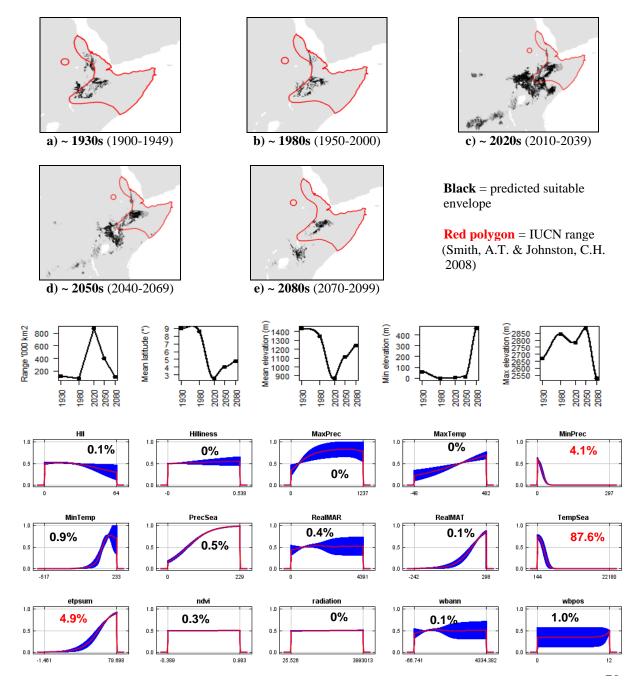
#16 – Ethiopian hare (Lepus fagani)	Model evaluation metric	
	AUC	0.99
n = 9	Omission rate	0.00
Expert: Zelalem Tolesa, Addis Ababa University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.56
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 25km/year (African leporids, range 15-35)		
Status: UNMODELLABLE; Included in final analysis: X		


Summary: The Ethiopian hare's bioclimatic envelope is predicted to decrease by 15% with no latitudinal poleward shift and a mean increase in elevation of ~200m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (92.7%) and annual evapotranspiration (5.3%).

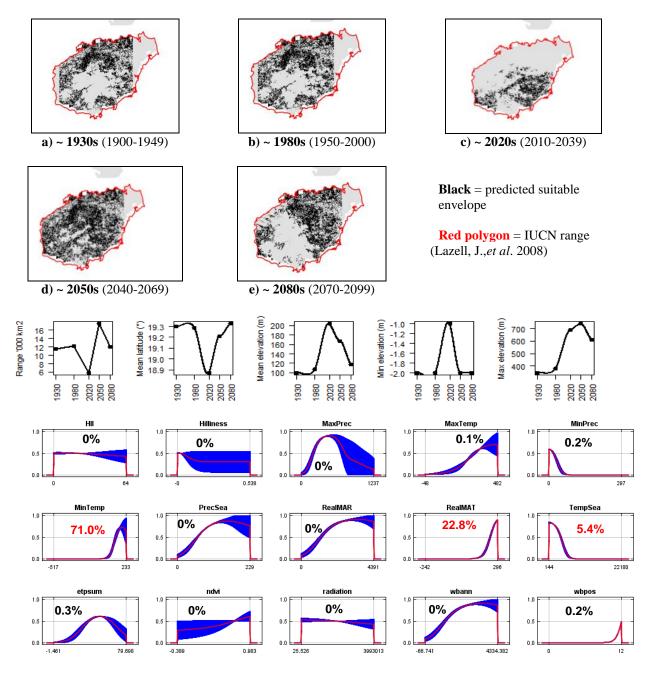
#17 – Tehuantepec jackrabbit (Lepus flavigularis)
n = 8
Expert: Arturo Carillo-Reyes, Universidad de Ciencias y
Artes de Chiapas
Expert evaluation: Poor
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 0.01km/year (Expert)
Status: UNMODELLABLE; Included in final analysis: X


	ric
AUC	0.99
Omission rate	0.00
Sensitivity	1.00
Specificity	0.99
Proportion correct	0.99
Карра	0.95
True Skill Statistic	0.99

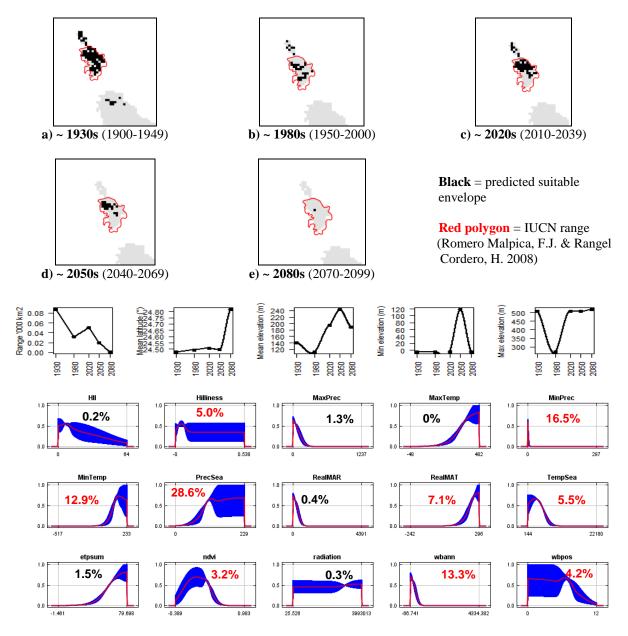
Summary: The Tehuantepec jackrabbit's bioclimatic envelope is predicted to decrease by 45% with a $\sim 1^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 450 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (81.7%), mean annual temperature (2.7%) and normalised difference vegetation index (1.7%).


#18 – Iberian hare (Lepus granatensis)	Model evaluation metric	
	AUC	0.94
n = 1675	Omission rate	0.08
Expert: Pelayo Acevedo, University of Porto	Sensitivity	0.92
Expert evaluation: Medium	Specificity	0.95
Data: Modern and historic	Proportion correct	0.95
	Карра	0.81
Envelope: Climatic and habitat	True Skill Statistic	0.87
Dispersal distance: 7km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

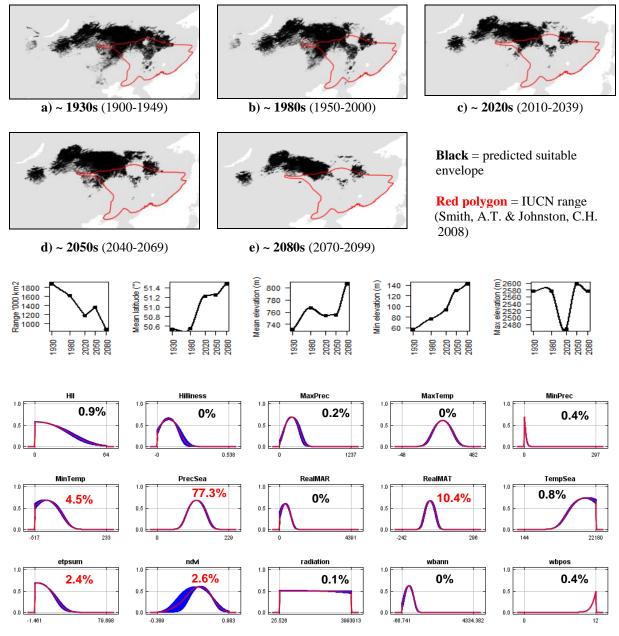
Summary: The Iberian hare's bioclimatic envelope is predicted to increase by 40% with a $\sim 1^{\circ}$ mean latitudinal poleward shift and a mean increase in elevation of ~ 10 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by maximum precipitation (39.0%), annual evapotranspiration (38.0%), minimum temperature (15.0%) and maximum temperature (3.0%).


#19 – Abyssinian hare (Lepus habessinicus)	Model evaluation 1	Model evaluation metric	
•	AUC	0.99	
n = 7	Omission rate	0.00	
Expert: Zelalem Tolesa, Addis Ababa University	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.82	
Envelope: Climatic and habitat	True Skill Statistic	0.99	
Dispersal distance: 25km/year (African leporids, range 15-35)			
Status: MODELLABLE; Included in final analysis: $$			

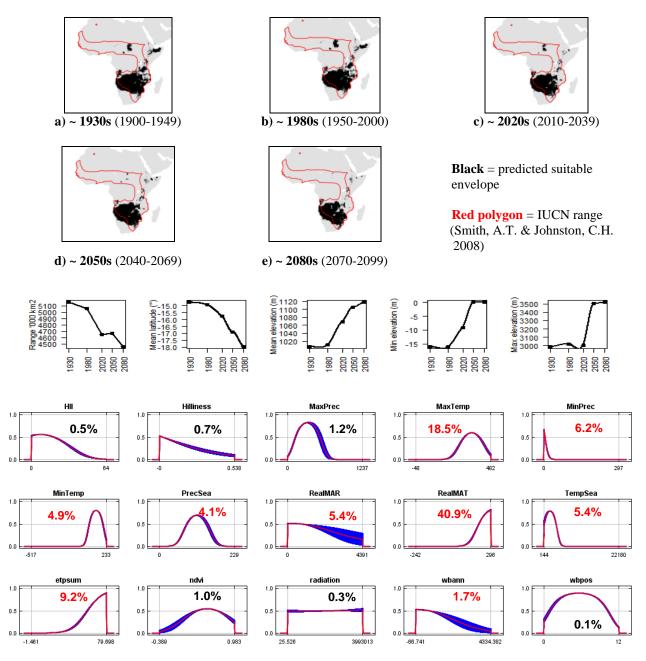
Summary: The Abyssinian hare's bioclimatic envelope is predicted to decrease by 4% with a $\sim 4^{\circ}$ mean latitudinal shift towards the Equator and a mean decrease in elevation of ~ 200 m driven by an decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (87.6%), annual evapotranspiration (4.9%) and minimum precipitation (4.1%).


#20 – Hainan hare (Lepus hainanus)	Model evaluation metric	
	AUC	0.99
n=9	Omission rate	0.00
Expert: Youhua Chen, Wuhan University, China	Sensitivity	1.00
Expert evaluation: Good	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.86
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 0.01km/year (Island species, range 0.01-0.01)		
Status: MODELLABLE; Included in final analysis: $$		

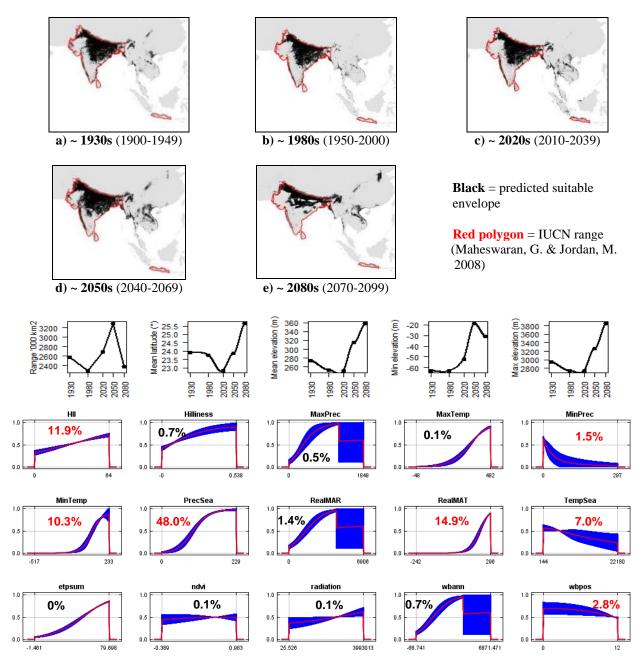
Summary: The Hainan hare's bioclimatic envelope is predicted to increase by 4% with no latitudinal poleward shift and a mean increase in elevation of ~20m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum temperature (71.0%), mean annual temperature (22.8%) and temperature seasonality (5.4%).


#21 – Black jackrabbit (Lepus insularis)	Model evaluation metric	
	AUC	1.00
n = 3	Omission rate	0.00
Expert: Tamara Rioja Pardela, Universidad de Ciencias y	Sensitivity	1.00
Artes de Chiapas, Mexico	Specificity	1.00
Expert evaluation: Good	Proportion correct	1.00
1	Карра	1.00
Data: Modern and historic	True Skill Statistic	1.00
Envelope: Climatic and habitat		
Dispersal distance: 0.01km/year (Island species, range 0.01-0.01)		
Status: MODELLABLE; Included in final analysis: $$		

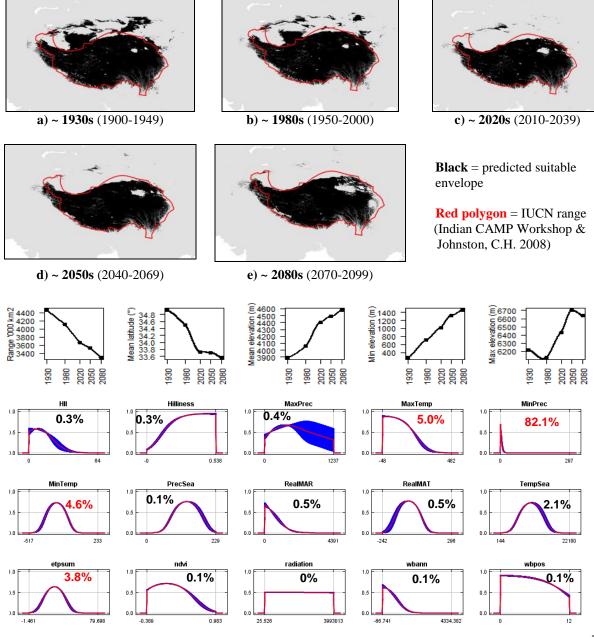
Summary: The Black jackrabbit's bioclimatic envelope is predicted to decrease by 100% with a $\sim 0.3^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 50 m driven by an increase in both minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (28.6%), minimum precipitation (16.5%), annual water balance (13.3%), minimum temperature (12.9%), mean annual temperature (7.1%), temperature seasonality (5.5%), surface roughness index (5.0%) and normalised difference vegetation index (3.2%).


#22 – Manchurian hare (Lepus mandshuricus)	Model evaluation metric	
	AUC	0.96
n = 36	Omission rate	0.08
Expert: Deyan Ge, Institute of Zoology, Chinese Academy of	Sensitivity	0.92
Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
1	Карра	0.78
Data: Modern and historic	True Skill Statistic	0.92
Envelope: Climatic and habitat		
Dispersal distance: 3km/year (Sokolov, V.E. et al., 2009)		
Status: MODELLABLE; Included in final analysis: $$		

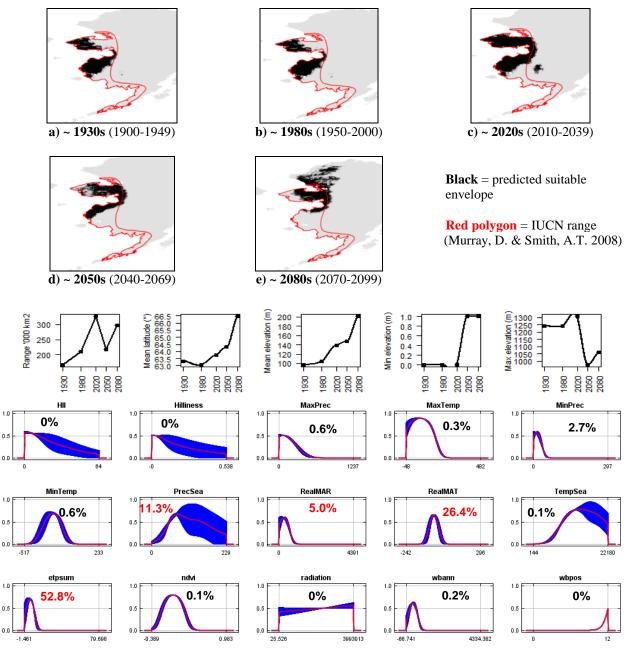
Summary: The Manchurian hare's bioclimatic envelope is predicted to decrease by 50% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 70 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (77.3%), mean annual temperature (10.4%), minimum temperature (4.5%), normalised difference vegetation index (2.6%) and annual evapotranspiration (2.4%).


#23 – African savannah hare (Lepus microtis)	Model evaluation metric	
	AUC	0.93
n = 82	Omission rate	0.13
Expert: John Flux, IUCN Lagomorph Specialist Group	Sensitivity	0.87
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.62
Envelope: Climatic only	True Skill Statistic	0.86
Dispersal distance: 15km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

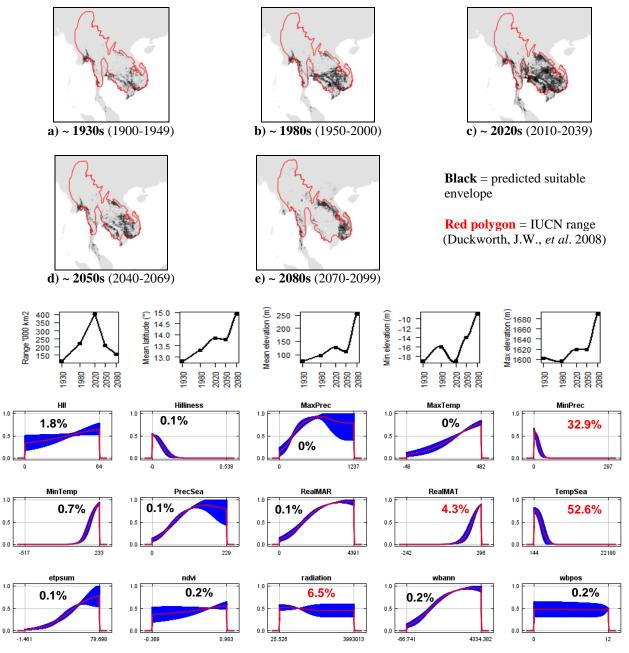
Summary: The African savannah hare's bioclimatic envelope is predicted to decrease by 15% with a \sim 3° mean latitudinal polewards shift and a mean increase in elevation of \sim 100m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (40.9%), maximum temperature (18.5%), annual evapotranspiration (9.2%), minimum precipitation (6.2%), temperature seasonality (5.4%), mean annual precipitation (5.4%), minimum temperature (4.9%), precipitation seasonality (4.1%) and annual water balance (1.7%).


#24 – Indian hare (Lepus nigricollis)	Model evaluation metric	
	AUC	0.99
n = 17	Omission rate	0.00
Expert: Gopinathan Maheswaran, Zoological Survey of India	Sensitivity	1.00
Expert evaluation: Good	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.59
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 6km/year (Expert)		
Status: <code>MODELLABLE</code> ; Included in final analysis: \checkmark		

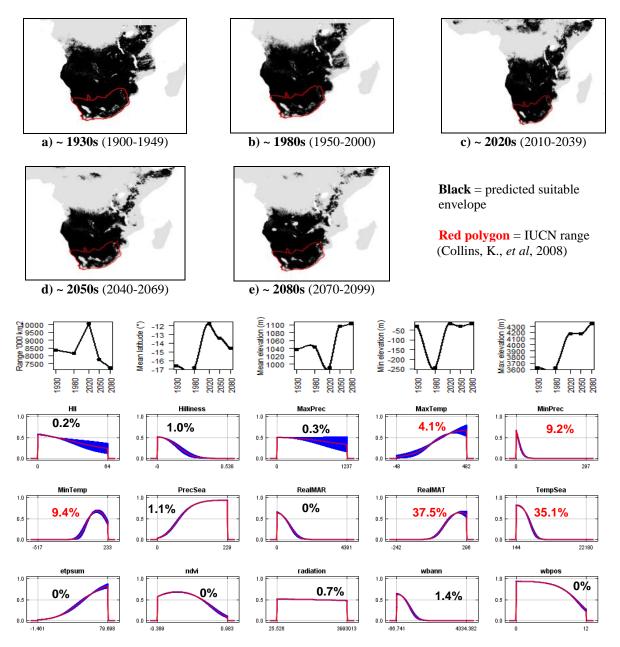
Summary: The Indian hare's bioclimatic envelope is predicted to decrease by 10% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 80 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (48.0%), mean annual temperature (14.9%), human influence index (11.9%), minimum temperature (10.3%), temperature seasonality (7.0%), number of months with a positive water balance (2.8%) and minimum precipitation (1.5%).


#25 – Woolly hare (Lepus oiostolus)	Model evaluation 1	netric
	AUC	0.94
n = 84	Omission rate	0.11
Expert: Weihe Yang , Institute of Zoology, Chinese Academy	Sensitivity	0.89
of Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
•	Карра	0.63
Data: Only modern	True Skill Statistic	0.89
Envelope: Climatic and habitat		
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

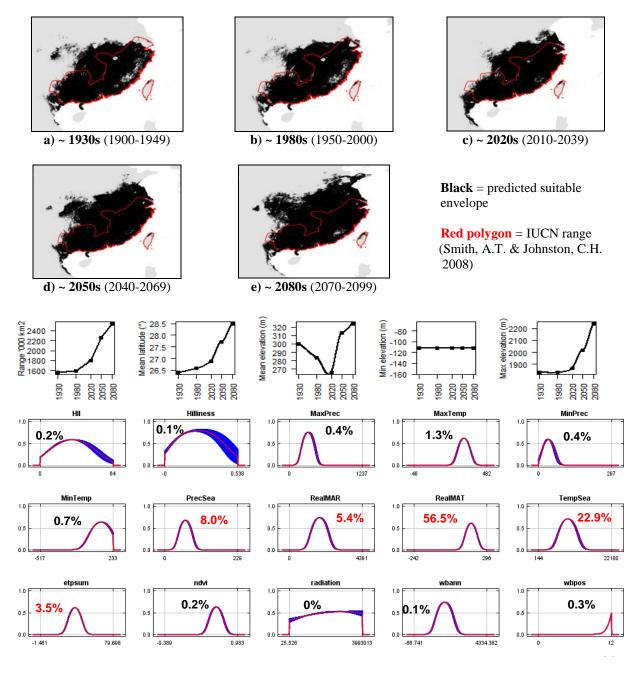
Summary: The Woolly hare's bioclimatic envelope is predicted to decrease by 25% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 680 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (82.1%), maximum temperature (5.0%), minimum temperature (4.6%) and annual evapotranspiration (3.8%).


#26 – Alaskan hare (Lepus othus)	Model evaluation r	Model evaluation metric	
	AUC	0.99	
n = 8	Omission rate	0.00	
Expert: Eric Waltari, City University of New York	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.89	
Envelope: Climatic only	True Skill Statistic	0.99	
Dispersal distance: 2km/year (similar to Arctic hare)			
Status: MODELLABLE; Included in final analysis: $$			

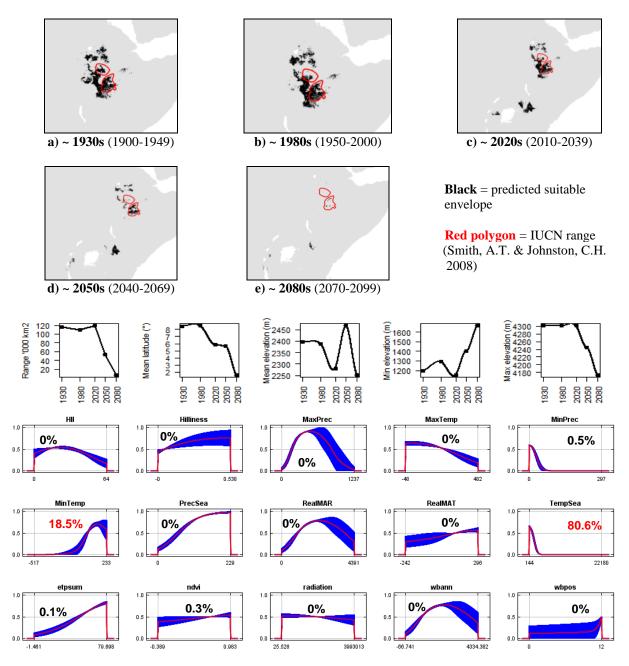
Summary: The Alaskan hare's bioclimatic envelope is predicted to increase by 80% with a $\sim 3^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 100 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (52.8%), mean annual temperature (26.4%), precipitation seasonality (11.3%) and mean annual precipitation (5.0%).


#27 – Burmese hare (Lepus peguensis)	Model evaluation metric	
	AUC	0.99
n = 7	Omission rate	0.00
Expert: Thomas Gray, WWF Greater Mekong	Sensitivity	1.00
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.58
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE: Included in final analysis: $$		

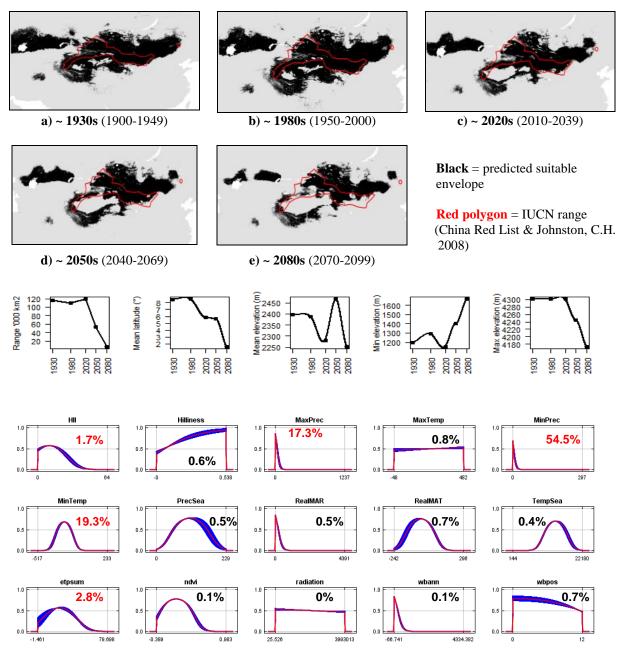
Summary: The Burmese hare's bioclimatic envelope is predicted to increase by 40% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 180 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (52.6%), minimum precipitation (32.9%), solar radiation (6.5%) and mean annual temperature (4.3%).


#28 – Scrub hare (Lepus saxatilis)	Model evaluation metric	
	AUC	0.95
n = 39	Omission rate	0.08
Expert: Kai Collins, University of Pretoria	Sensitivity	0.92
Expert evaluation: Poor	Specificity	0.97
Data: Only modern	Proportion correct	0.97
Envelope: Climatic and habitat	Карра	0.18
•	True Skill Statistic	0.89
Dispersal distance: 25km/year (African leporids, range 15-35)		
Status: UNMODELLABLE; Included in final analysis: X		

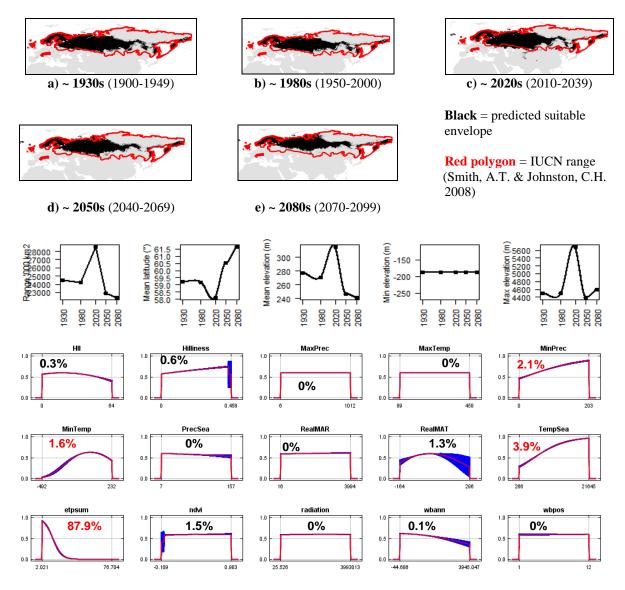
Summary: The Scrub hare's bioclimatic envelope is predicted to decrease by 15% with a $\sim 2^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 65 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (52.8%), mean annual temperature (26.4%), precipitation seasonality (11.3%) and mean annual precipitation (5.0%).


#29 – Chinese hare (Lepus sinensis)	CP (Lanus sinansis) Model evaluation metric	
	AUC	0.94
n = 141	Omission rate	0.11
Expert: Weihe Yang, Institute of Zoology, Chinese Academy	Sensitivity	0.89
of Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
I de la companya de la company	Карра	0.81
Data: Modern and historic	True Skill Statistic	0.89
Envelope: Climatic and habitat		
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

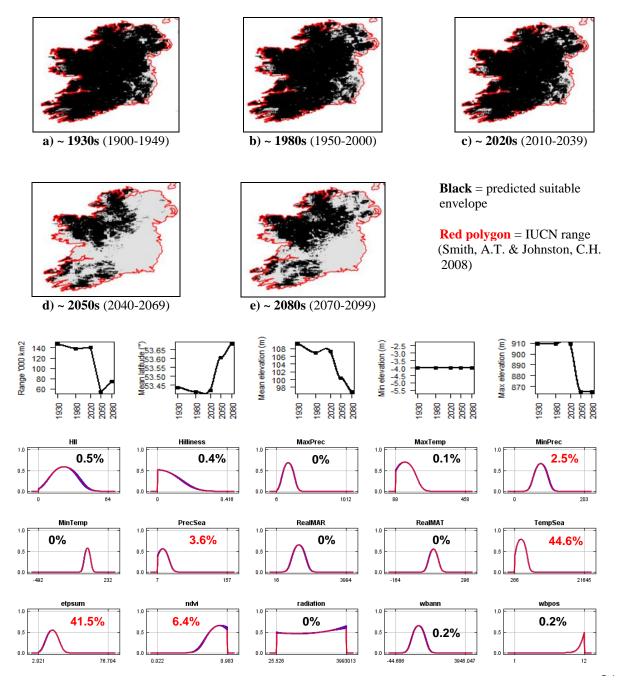
Summary: The Chinese hare's bioclimatic envelope is predicted to increase by 60% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 25 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (56.5%), temperature seasonality (22.9%), precipitation seasonality (8.0%), mean annual precipitation (5.4%) and annual evapotranspiration (3.5%).


#30 – Ethiopian highland hare (Lepus starcki)	Model evaluation metric	
	AUC	0.96
n = 13	Omission rate	0.08
Expert: Zelalem Tolesa, Addis Ababa University	Sensitivity	0.92
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.86
Envelope: Climatic and habitat	True Skill Statistic	0.92
Dispersal distance: 25km/year (African leporids, range 15-35)		
Status: MODELLABLE; Included in final analysis: $$		

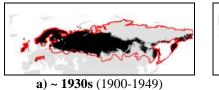
Summary: The Ethiopian highland hare's bioclimatic envelope is predicted to decrease by 90% with a \sim 7° mean latitudinal shift towards the Equator and a mean decrease in elevation of \sim 140m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (80.6%) and minimum temperature (18.5%).

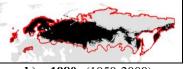

#31 – Desert hare (Lepus tibetanus)	Model evaluation metric	
	AUC	0.92
n = 55	Omission rate	0.15
Expert: Chelmala Srinivasulu, Osmania University, India	Sensitivity	0.85
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.99
•	Карра	0.57
Envelope: Climatic and habitat	True Skill Statistic	0.85
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

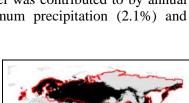
Summary: The Desert hare's bioclimatic envelope is predicted to decrease by 50% with no latitudinal shift towards the Equator, but a mean increase in elevation of \sim 320m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (54.5%), minimum temperature (19.3%), maximum precipitation (17.3%), annual evapotranspiration (2.8%) and human influence index (1.7%).


#32 – Mountain hare (<i>Lepus timidus</i>) – Eurasian populations	Model evaluation metric	
	AUC	0.91
n = 2,460	Omission rate	0.08
Expert: Neil Reid, Queen's University Belfast	Sensitivity	0.92
Expert evaluation: Medium	Specificity	0.90
Data: Only modern	Proportion correct	0.91
•	Карра	0.74
Envelope: Climatic and habitat	True Skill Statistic	0.82
Dispersal distance: 2km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

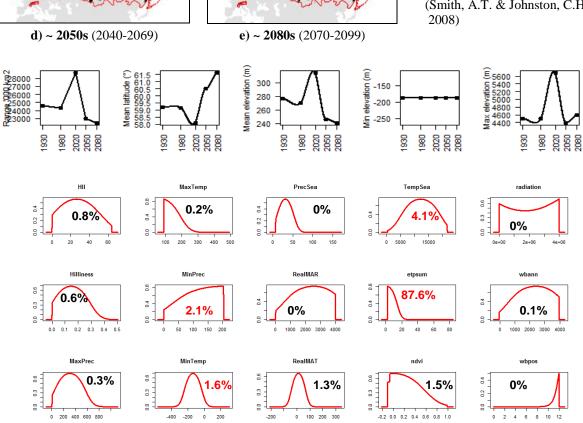
Summary: The Mountain hare's bioclimatic envelope is predicted to decrease by 10% with a $\sim 4^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 10 m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (87.9%), temperature seasonality (3.9%), minimum precipitation (2.1%) and minimum temperature (1.6%).


#33 – Irish hare (Lepus timidus hibernicus)	Model evaluation r	Model evaluation metric	
	AUC	0.94	
n = 706	Omission rate	0.08	
Expert: Neil Reid, Queen's University Belfast	Sensitivity	0.92	
Expert evaluation: Medium	Specificity	0.97	
Data: Only modern	Proportion correct	0.96	
Envelope: Climatic and habitat	Карра	0.75	
-	True Skill Statistic	0.88	
Dispersal distance: 2km/year (Expert)			
Status: MODELLABLE; Included in final analysis: $$			

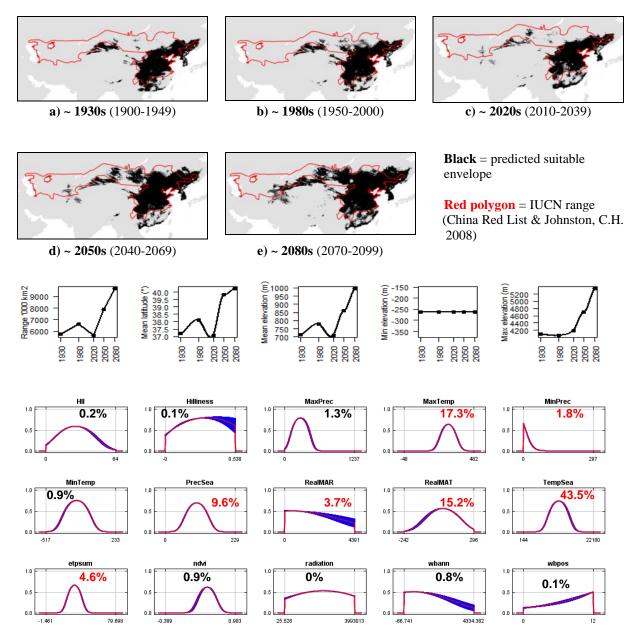

Summary: The Irish hare's bioclimatic envelope is predicted to decrease by 50% with a ~ 0.5° mean latitudinal polewards shift and a mean decrease in elevation of ~10m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (44.6%), annual evapotranspiration (41.5%), normalised difference vegetation index (6.4%), precipitation seasonality (3.6%) and maximum precipitation (2.5%).


#34 – Mountain hare (Lepus timidus)	Model evaluation	Model evaluation metric	
	AUC	0.92	
– Eurasian & Irish populations combined	Omission rate	0.07	
n = 3,166	Sensitivity	0.93	
Expert: Neil Reid, Queen's University Belfast	Specificity	0.91	
Expert evaluation: Medium	Proportion correct	0.91	
•	Карра	0.78	
Data: Only modern	True Skill Statistic	0.84	
Envelope: Climatic and habitat			
Dispersal distance: 2km/year (Expert)			
Status: MODELLABLE; Included in final analysis: $$			

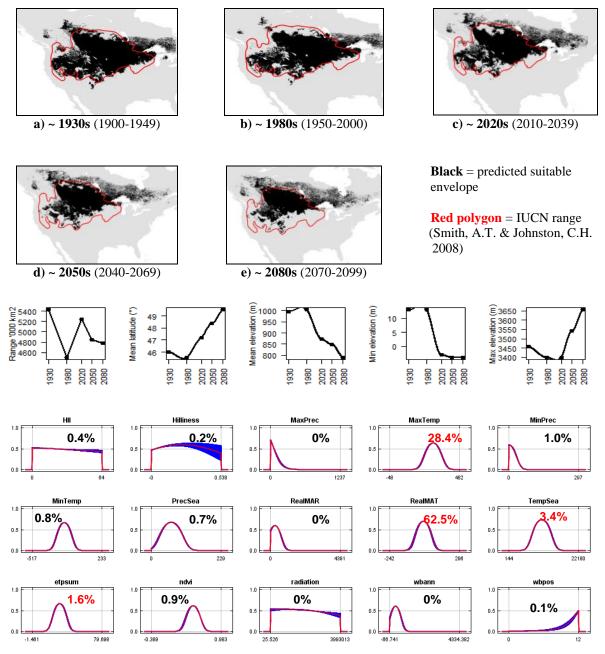
Summary: The Mountain hare's bioclimatic envelope is predicted to decrease by 10% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~40m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (87.6%), temperature seasonality (4.1%), minimum precipitation (2.1%) and minimum temperature (1.6%).


b) ~ 1980s (1950-2000)

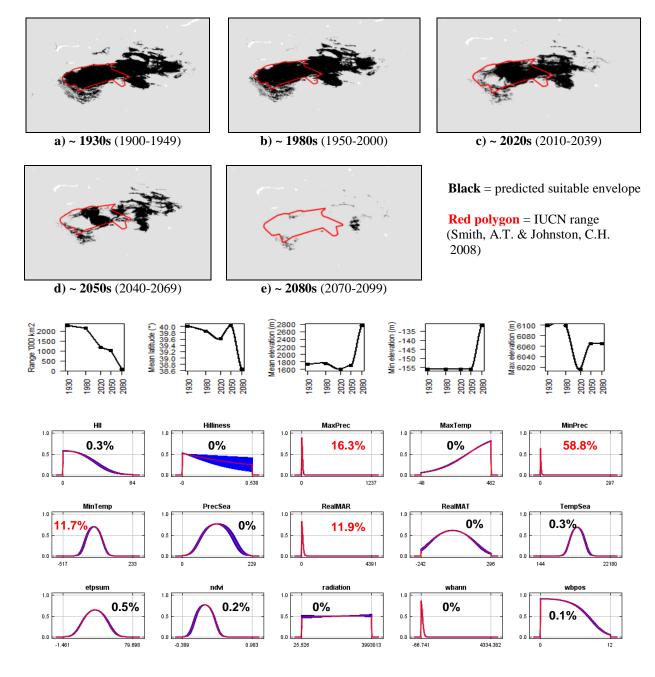
c) ~ 2020s (2010-2039)


Black = predicted suitable envelope

Red polygon = IUCN range (Smith, A.T. & Johnston, C.H. 2008)

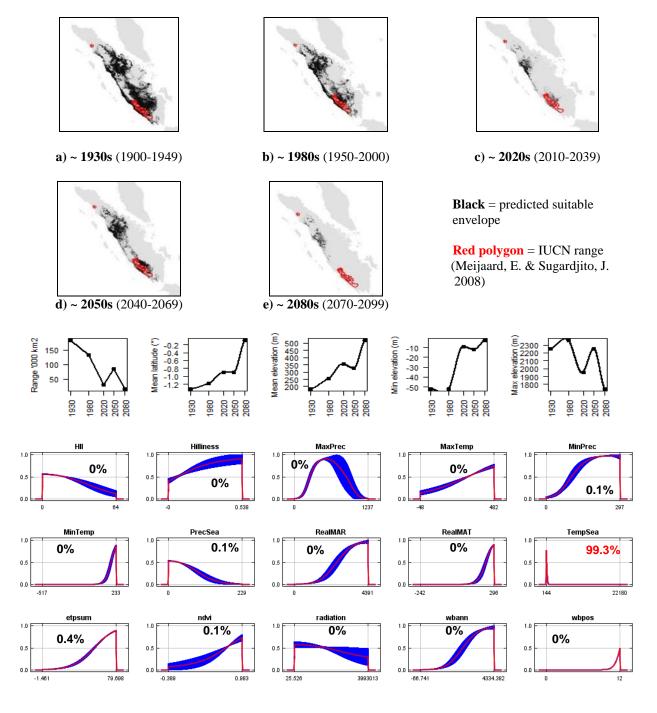

#35 – Tolai hare (Lepus tolai)	Model evaluation metric	
	AUC	0.94
n = 316	Omission rate	0.11
Expert: Chelmala Srinivasulu, Osmania University, India	Sensitivity	0.89
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.98
	Карра	0.76
Envelope: Climatic and habitat	True Skill Statistic	0.88
Dispersal distance: 2.5km/year (Asian leporids, range 1-35)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Tolai hare's bioclimatic envelope is predicted to increase by 70% with a $\sim 3^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 280 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (43.5%), maximum temperature (17.3%), mean annual temperature (15.2%), precipitation seasonality (9.6%), annual evapotranspiration (4.6%), mean annual precipitation (3.7%) and minimum precipitation (1.8%).

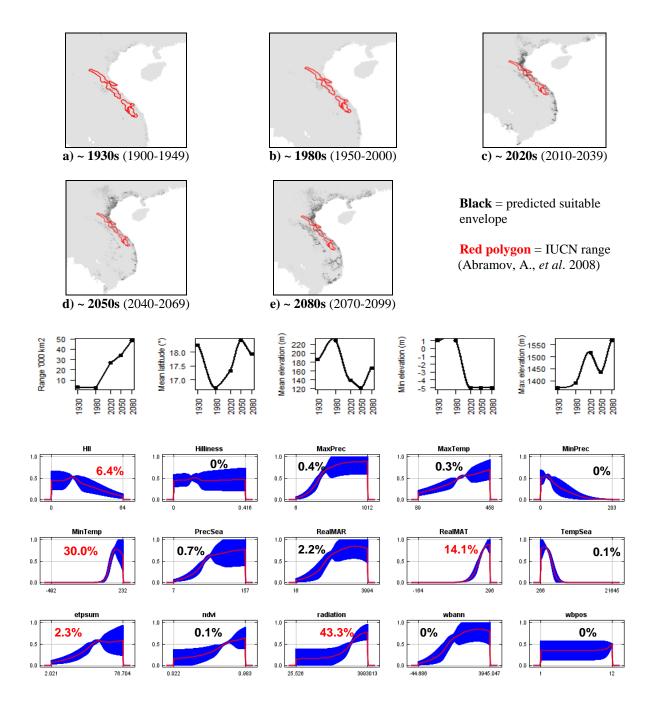

#36 – White-tailed jackrabbit (Lepus townsendii)	Model evaluation metric	
	AUC	0.94
n = 275	Omission rate	0.10
Expert: Eric Waltari, City University of New York	Sensitivity	0.90
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.76
•	True Skill Statistic	0.89
Dispersal distance: 18.9km/year (N.Am. leporids, range 2-25)		
Status: MODELLABLE; Included in final analysis: \checkmark		

Summary: The White-tailed jackrabbit's bioclimatic envelope is predicted to decrease by 10% with a $\sim 4^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 200 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (62.5%), maximum temperature (28.5%), temperature seasonality (3.4%) and annual evapotranspiration (1.6%).

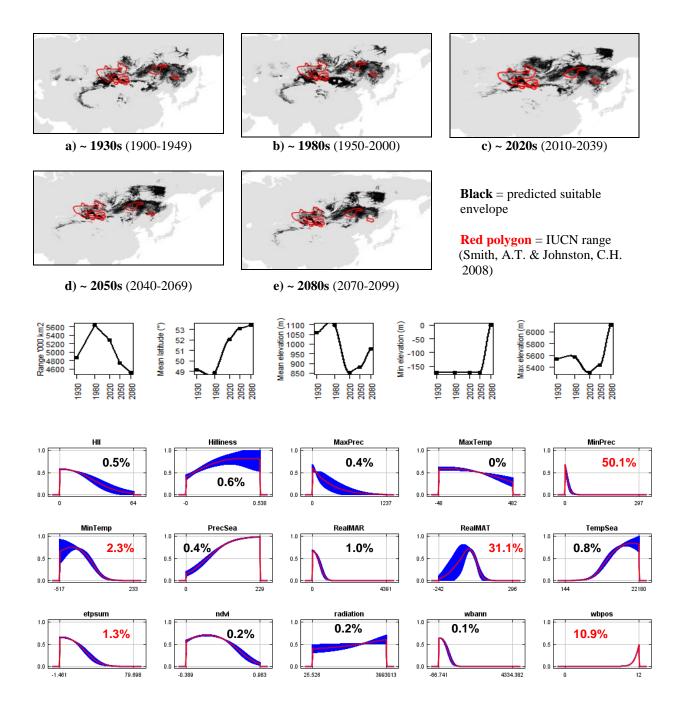
#37 – Yarkand hare (Lepus yarkandensis)	Model evaluation metric	
	AUC	0.95
n = 49	Omission rate	0.10
Expert: Weihe Yang, Institute of Zoology, Chinese Academy	Sensitivity	0.90
of Sciences	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
•	Карра	0.74
Data: Modern and historic	True Skill Statistic	0.90
Envelope: Climatic and habitat		
Dispersal distance: 2km/year (Smith & Xie, 2008)		
Status: MODELLABLE; Included in final analysis: $$		


Summary: The Yarkand hare's bioclimatic envelope is predicted to decrease by 100% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 1000 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (58.8%), maximum precipitation (16.3%), mean annual precipitation (11.9%) and minimum temperature (11.7%).

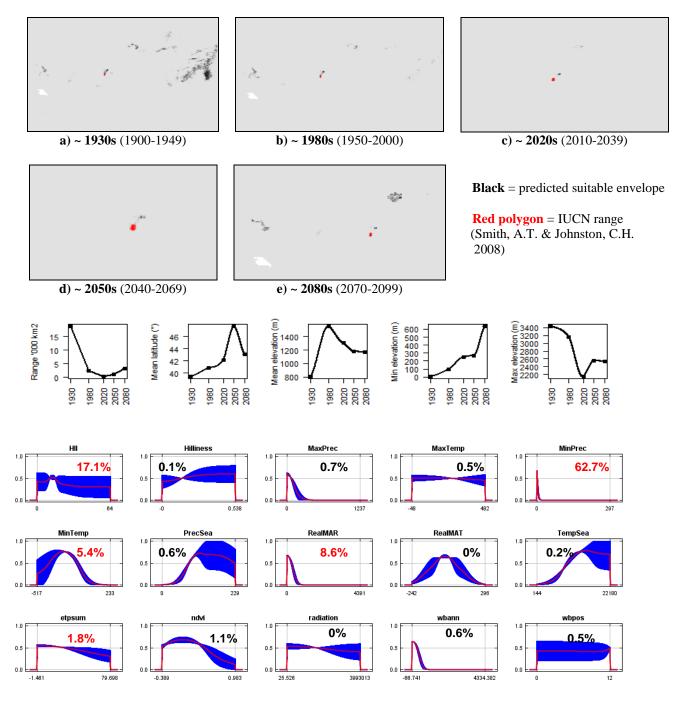
#38 – Sumatran striped rabbit (Nesolagus netscheri)
n = 11
Expert: Hariyo Wibisono, Wildlife Conservation Society, Indonesia
Expert evaluation: Poor
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 0.01km/year (Expert)
Status: UNMODELLABLE; Included in final analysis: X


Model evaluation metric	
AUC	0.99
Omission rate	0.00
Sensitivity	1.00
Specificity	0.99
Proportion correct	0.99
Карра	0.95
True Skill Statistic	0.99

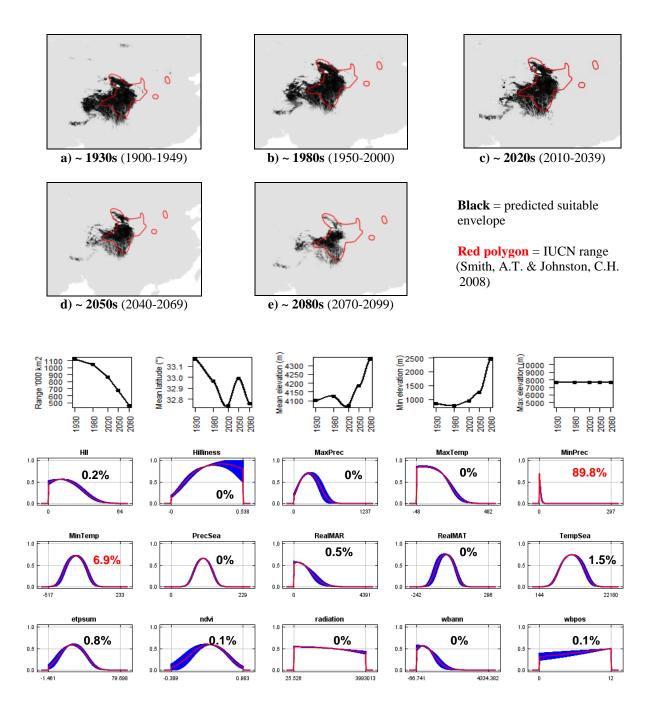
Summary: The Sumatran striped rabbit's bioclimatic envelope is predicted to decrease by 91% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 330 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (99.3%).


#39 – Annamite striped rabbit (<i>Nesolagus timminsi</i>)	Model evaluation metric	
· · · · · · · · · · · · · · · · · · ·	AUC	0.99
n = 4	Omission rate	0.00
Expert: Thomas Gray, WWF Greater Mekong & Andrew	Sensitivity	1.00
Tilker, University of Texas Austin	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
•	Карра	0.50
Data: Only modern	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 10km/year (Expert)		
Status: UNMODELLABLE; Included in final analysis: X		

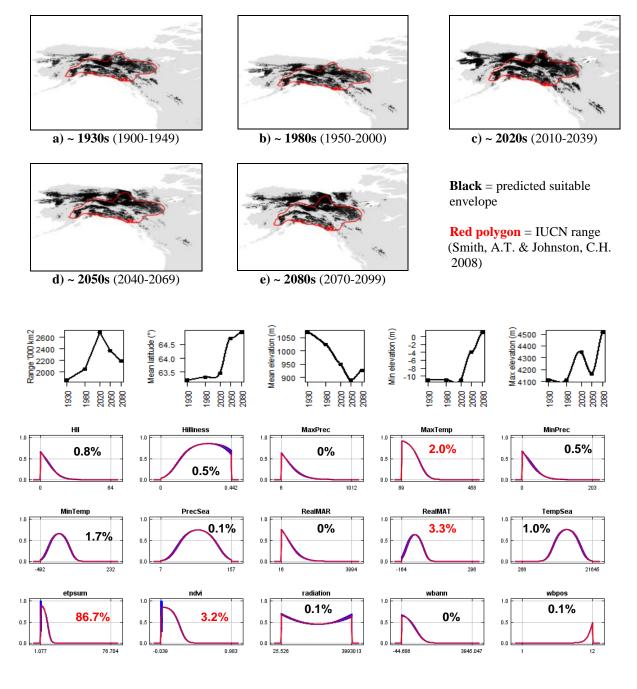
Summary: The Annamite striped rabbit's bioclimatic envelope is predicted to decrease by 1500% with a ~ 0.3° mean latitudinal shift towards the Equator and a mean decrease in elevation of ~20m driven by an decrease in minimum elevation. 95% of the permutation importance of the model was contributed to by solar radiation (43.3%), minimum temperature (30.0%), mean annual temperature (14.1%), human influence index (6.4%) and annual evapotranspiration (2.3%).


#40 – Alpine pika (Ochotona alpina)	Model evaluation metric	
	AUC	0.99
n = 16	Omission rate	0.00
Expert: Sumiya Ganzorig, Hokkaido University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.29
•	True Skill Statistic	0.99
Dispersal distance: 10km/year (Similar ecology to <i>O.pallasi</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

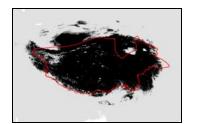
Summary: The Alpine pika's bioclimatic envelope is predicted to decrease by 10% with a $\sim 4^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 80 m. 95% of the permutation importance of the model was contributed to by minimum precipitation (50.1%), mean annual temperature (31.1%), number of months with a positive water balance (10.9%), minimum temperature (2.3%) and annual evapotranspiration (1.3%).


#41 – Silver pika (Ochotona argentata)	Model evaluation metric	
- · · · · · · · · · · · · · · · · · · ·	AUC	1.00
n = 4	Omission rate	0.00
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	1.00
Data: Only modern	Proportion correct	1.00
Envelope: Climatic and habitat	Карра	1.00
A	True Skill Statistic	1.00
Dispersal distance: 3km/year (Asian pikas, range 1-15)		
Status: UNMODELLABLE; Included in final analysis: X		

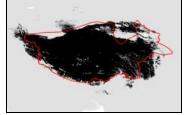
Summary: The Silver pika's bioclimatic envelope is predicted to decrease by 80% with a $\sim 4^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 360 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (62.7%), human influence index (17.1%), mean annual precipitation (8.6%), minimum temperature (5.4%) and annual evapotranspiration (1.8%).


#42 – Gansu pika (Ochotona cansus)	Model evaluation metric	
- · · ·	AUC	0.95
n = 38	Omission rate	0.11
Expert: Andrew Smith, Arizona State University	Sensitivity	0.89
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.61
Envelope: Climatic and habitat	True Skill Statistic	0.89
Dispersal distance: 1.5km/year (Similar ecology to <i>O.roylei</i>)		
Status: MODELLABLE; Included in final analysis: \checkmark		

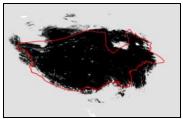
Summary: The Gansu pika's bioclimatic envelope is predicted to decrease by 60% with a $\sim 0.4^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 230 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (89.8%) and minimum temperature (6.9%).

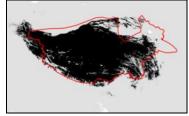

#43 – Collared pika (Ochotona collaris)	Model evaluation metric	
	AUC	0.95
n = 193	Omission rate	0.10
Expert: Hayley Lanier, University of Michigan & David Hik,	Sensitivity	0.90
University of Alberta	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
I de la constante de la consta	Карра	0.86
Data: Modern and historic	True Skill Statistic	0.90
Envelope: Climatic and habitat		
Dispersal distance: 1km/year (Expert)		
Status: UNMODELLABLE; Included in final analysis: X		

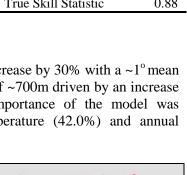
Summary: The Collared pika's bioclimatic envelope is predicted to increase by 20% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 140 m. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (86.7%), mean annual temperature (3.3%), normalised difference vegetation index (3.2%) and maximum temperature (2.0%).

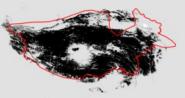


44 – Plateau pika (Ochotona curzoniae) Model evalu		ation metric	
	AUC	0.94	
n = 131	Omission rate	0.11	
Expert: Andrew Smith, Arizona State University	Sensitivity	0.89	
Expert evaluation: Good	Specificity	0.99	
Data: Only modern	Proportion correct	0.99	
2	Карра	0.76	
Envelope: Climatic and habitat	True Skill Statistic	0.88	
Dispersal distance: 0.1km/year (Expert)			
Status: MODELLABLE; Included in final analysis: $$			


Summary: The Plateau pika's bioclimatic envelope is predicted to decrease by 30% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 700 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (48.0%), maximum temperature (42.0%) and annual evapotranspiration (6.8%).

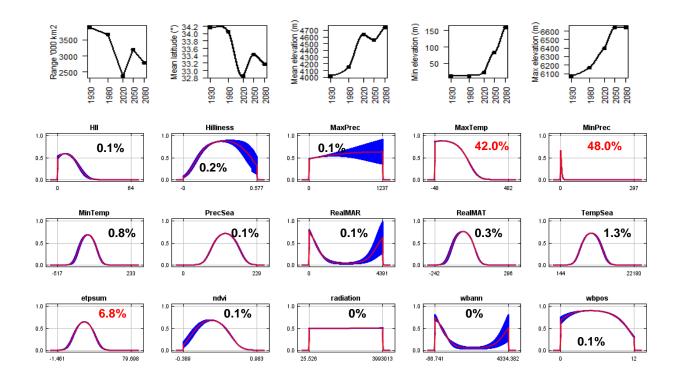

a) ~ 1930s (1900-1949)


d) ~ 2050s (2040-2069)

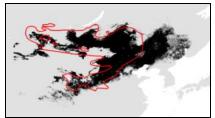


b) ~ 1980s (1950-2000)

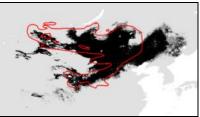
e) ~ 2080s (2070-2099)



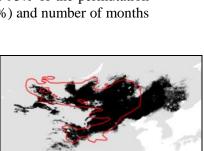
c) ~ 2020s (2010-2039)


Black = predicted suitable envelope

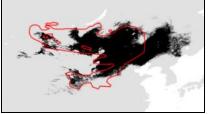
Red polygon = IUCN range (Smith, A.T. & Johnston, C.H. 2008)

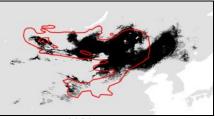


#45 – Daurian pika (Ochotona dauurica)	Model evaluation metric	
	AUC	0.95
n = 131	Omission rate	0.10
Expert: Andrew Smith, Arizona State University	Sensitivity	0.90
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.66
1	True Skill Statistic	0.89
Dispersal distance: 0.1km/year (Similar ecology to <i>O.curzoniae</i>)		
Status: MODELLABLE; Included in final analysis: $$		

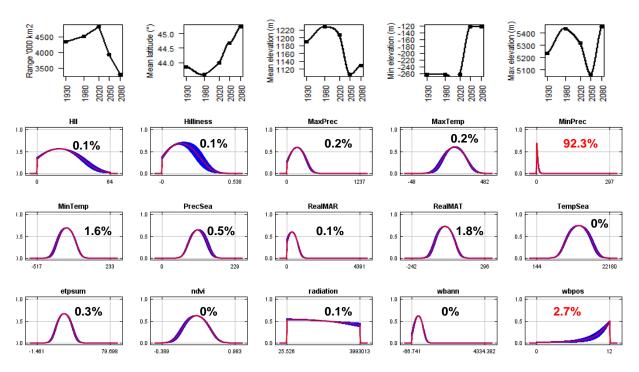

Summary: The Daurian pika's bioclimatic envelope is predicted to decrease by 25% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 60 m. 95% of the permutation importance of the model was contributed to by minimum precipitation (92.3%) and number of months with a positive water balance (2.7%).

a) ~ 1930s (1900-1949)

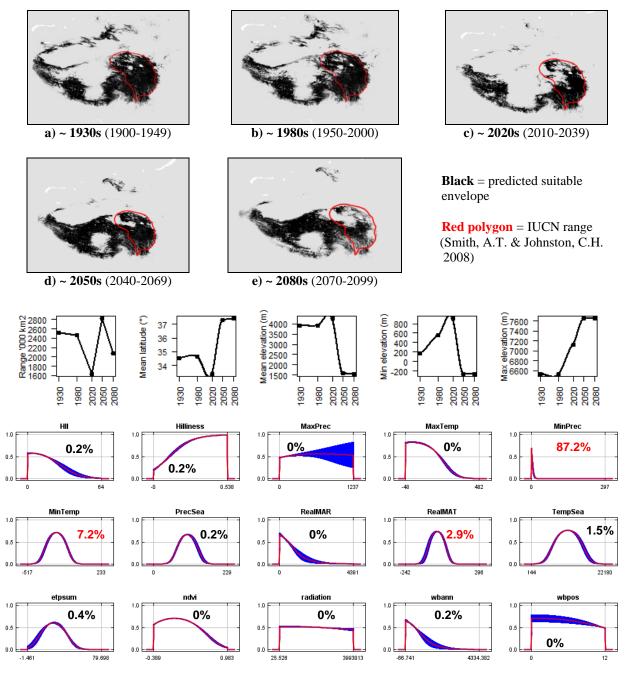

b) ~ 1980s (1950-2000)


```
c) ~ 2020s (2010-2039)
```

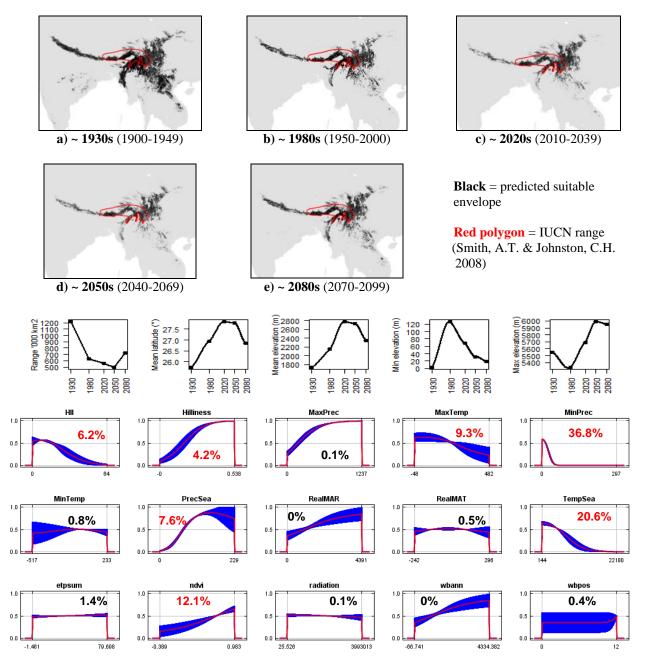
Black = predicted suitable envelope


Red polygon = IUCN range (Smith, A.T. & Johnston, C.H. 2008)

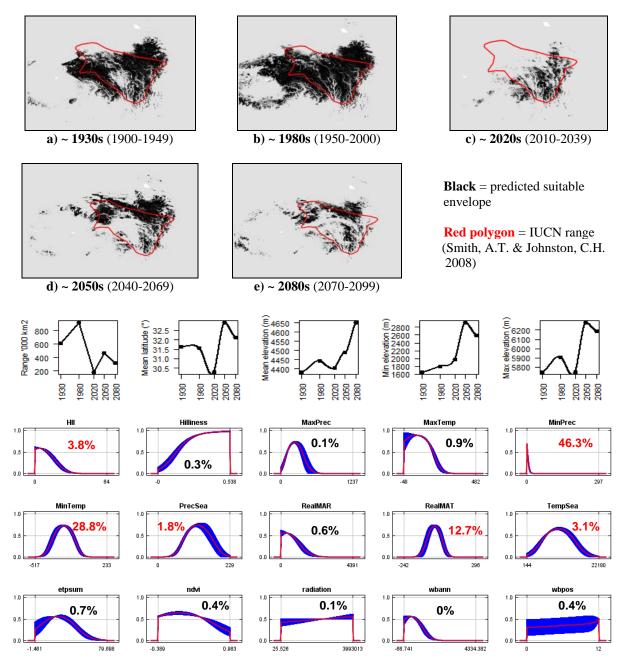
d) ~ 2050s (2040-2069)



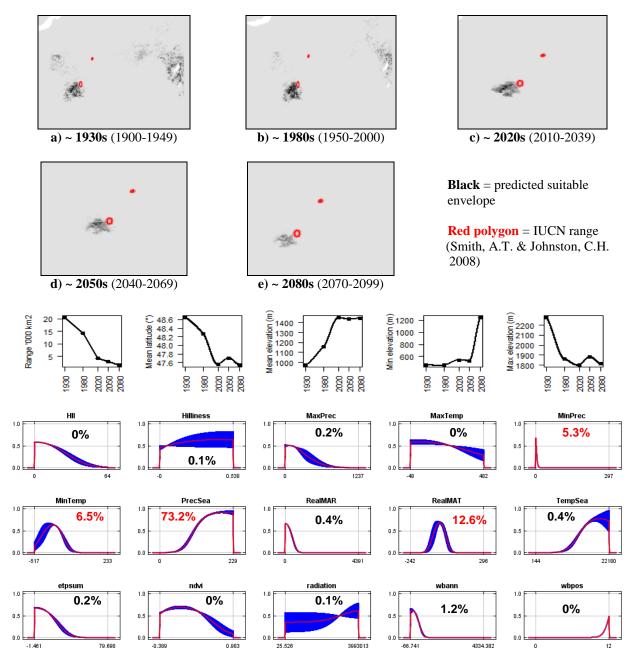
e) ~ 2080s (2070-2099)


#46 – Chinese red pika (Ochotona erythrotis)	Model evaluation metric	
	AUC	0.95
n = 39	Omission rate	0.10
Expert: Andrew Smith, Arizona State University	Sensitivity	0.90
Expert evaluation: Poor	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.53
•	True Skill Statistic	0.89
Dispersal distance: 3km/year (Asian pikas, range 1-15)		
Status: UNMODELLABLE; Included in final analysis: X		

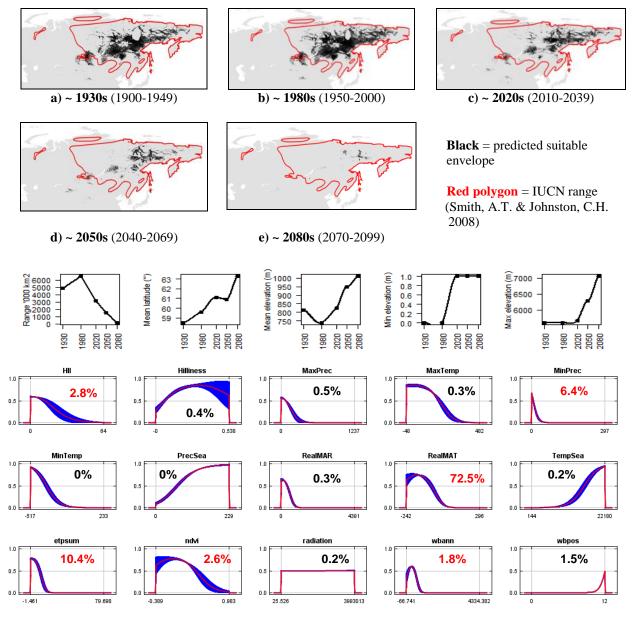
Summary: The Chinese red pika's bioclimatic envelope is predicted to decrease by 20% with a $\sim 3^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 2400 m driven by a decrease in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (87.2%), minimum temperature (7.2%) and mean annual temperature (2.9%).


#47 – Forrest's pika (Ochotona forresti)	ika (Ochotona forrasti) Model evaluation m	
	AUC	0.95
n = 9	Omission rate	0.10
Expert: Andrew Smith, Arizona State University	Sensitivity	0.90
Expert evaluation: Poor	Specificity	0.99
Data: Only modern	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.53
-	True Skill Statistic	0.89
Dispersal distance: 3km/year (Asian pikas, range 1-15)		
Status: UNMODELLABLE; Included in final analysis: X		

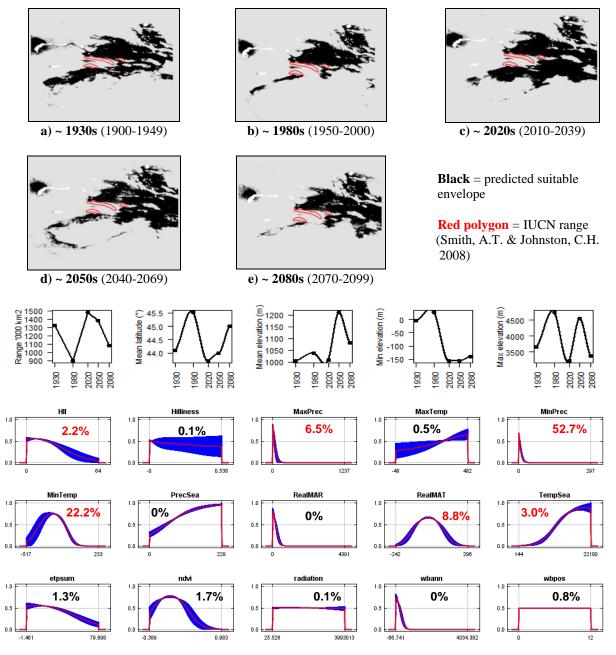
Summary: The Forrest's pika's bioclimatic envelope is predicted to decrease by 40% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 600 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (36.8%), temperature seasonality (20.6%), normalised difference vegetation index (12.1%), maximum temperature (9.3%), precipitation seasonality (7.6%), human influence index (6.2%) and surface roughness index (4.2%).


#48 – Glover's pika (Ochotona gloveri)	Model evaluation 1	Model evaluation metric	
	AUC	0.99	
n = 22	Omission rate	0.00	
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Only modern	Proportion correct	0.99	
Envelope: Climatic and habitat	Карра	0.65	
L Contraction of the second seco	True Skill Statistic	0.99	
Dispersal distance: 3km/year (Asian pikas, range 1-15)			
Status: MODELLABLE; Included in final analysis: $$			

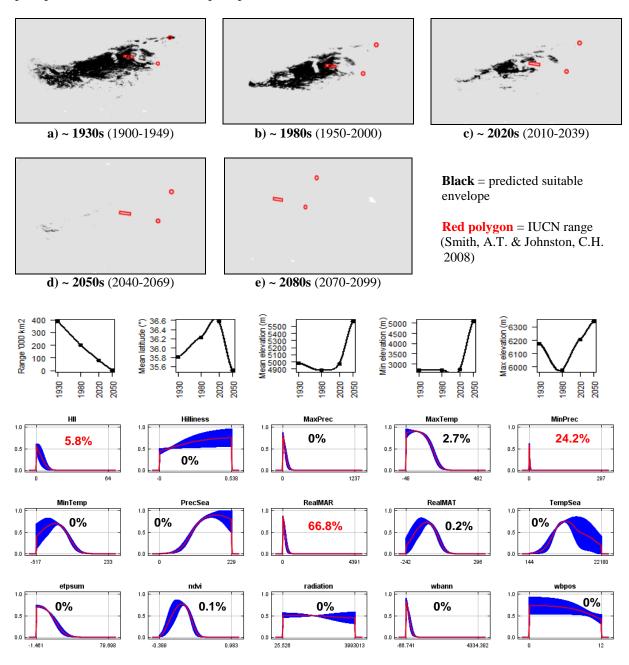
Summary: The Glover's pika's bioclimatic envelope is predicted to decrease by 50% with a $\sim 0.5^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 270 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (46.3%), minimum temperature (28.8%), mean annual temperature (12.7%), human influence index (3.8%), temperature seasonality (3.1%) and precipitation seasonality (1.8%).


#49 – Hoffmann's pika (Ochotona hoffmanni)	Model evaluation metric	
	AUC	0.99
n = 5	Omission rate	0.00
Expert: Andrey Lissovsky, Zoological Museum of Moscow	Sensitivity	1.00
State University	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
1	Карра	0.91
Data: Modern and historic	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 3km/year (Asian pikas, range 1-15)		
Status: MODELLABLE; Included in final analysis: $$		

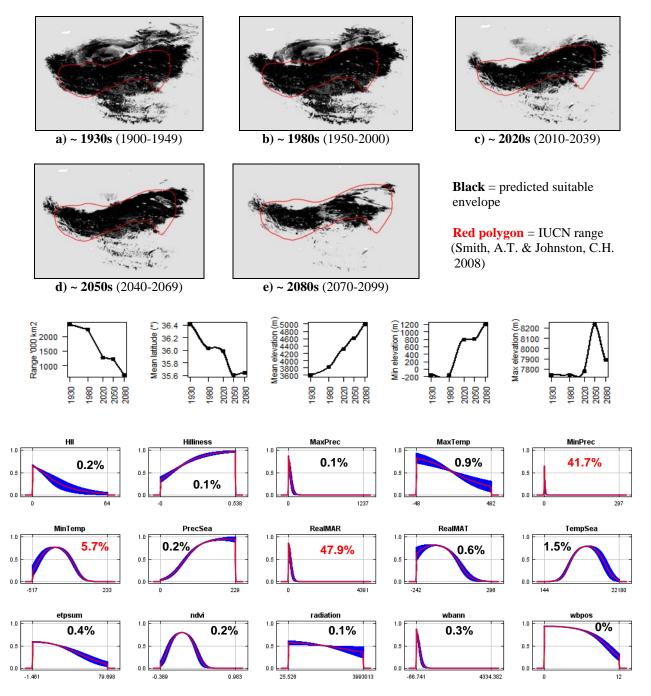
Summary: The Hoffmann's pika's bioclimatic envelope is predicted to decrease by 90% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 470 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (73.2%), mean annual temperature (12.6%), minimum temperature (6.5%) and minimum precipitation (5.3%).


#50 – Siberian pika (Ochotona hyperborea)	Model evaluation metric	
	AUC	0.97
n = 16	Omission rate	0.06
Expert: Julia Witczuk, Warsaw Agricultural University,	Sensitivity	0.94
Poland	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
Data: Modern and historic	Карра	0.40
	True Skill Statistic	0.93
Envelope: Climatic and habitat		
Dispersal distance: 10km/year (Similar ecology to O.alpina)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Siberian pika's bioclimatic envelope is predicted to decrease by 100% with a $\sim 5^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 200 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (72.5%), annual evapotranspiration (10.4%), minimum precipitation (6.4%), human influence index (2.8%), normalised difference vegetation index (2.6%) and annual water balance (1.8%).

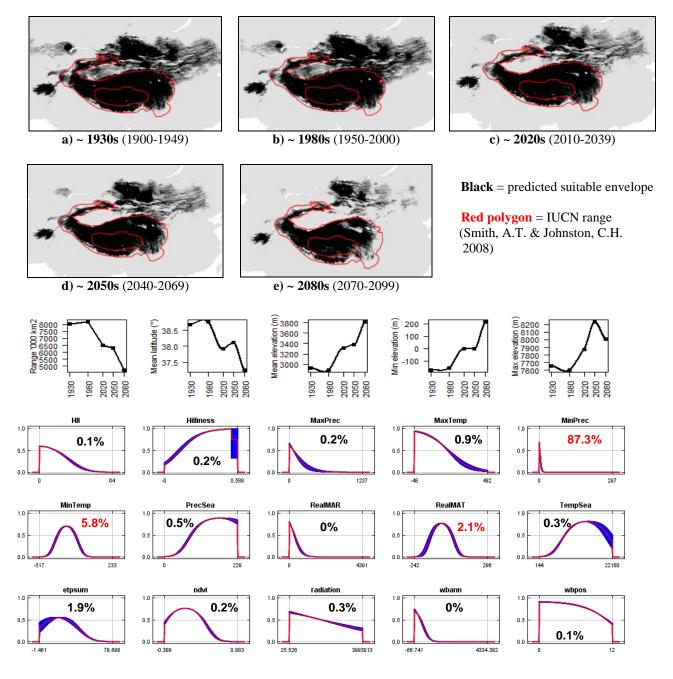

#51– Ili pika (Ochotona iliensis)	Model evaluation metric	
	AUC	0.99
n = 11	Omission rate	0.00
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.99
Data: Only modern	Proportion correct	0.99
	Карра	0.55
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 1km/year (Similar ecology to <i>O.koslowi</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The IIi pika's bioclimatic envelope is predicted to decrease by 20% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of $\sim 80m$. 95% of the permutation importance of the model was contributed to by minimum precipitation (52.7%), minimum temperature (22.2%), mean annual temperature (8.8%), maximum precipitation (6.5%), temperature seasonality (3.0%) and human influence index (2.2%).

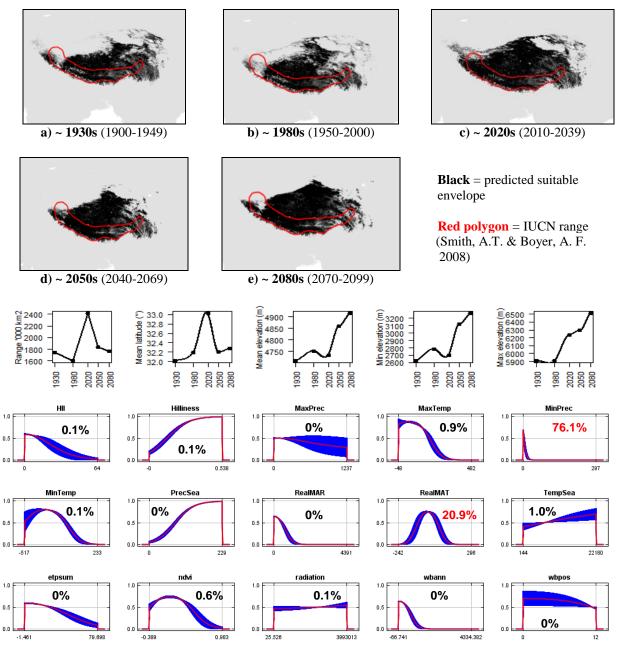

#52 – Kozlov's pika (Ochotona koslowi)	Model evaluation metric	
	AUC	0.99
n = 5	Omission rate	0.00
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.86
•	True Skill Statistic	0.99
Dispersal distance: 1km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Kozlov's pika's bioclimatic envelope is predicted to decrease by 100% (total extinction). 95% of the permutation importance of the model was contributed to by mean annual precipitation (66.8%), minimum precipitation (24.2%) and human influence index (5.8%).

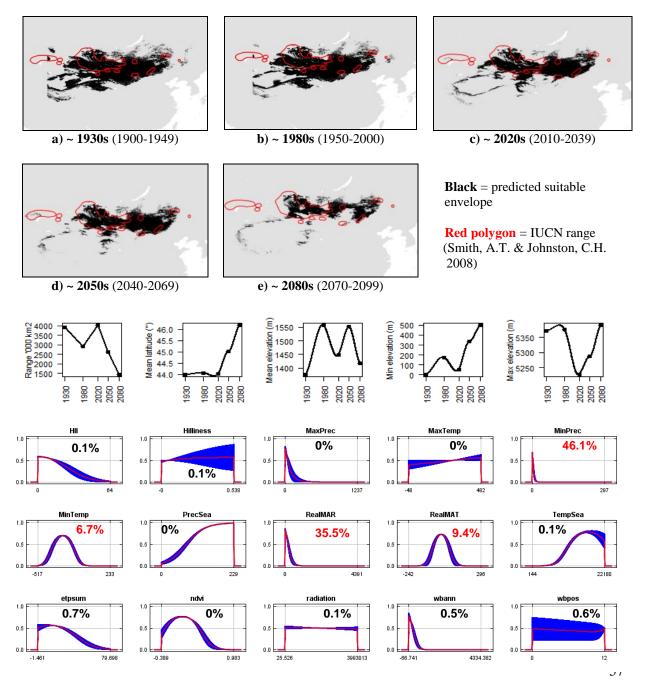
#53 – Ladak pika (Ochotona ladacensis)	Model evaluation metric	
	AUC	0.99
n = 18	Omission rate	0.00
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.63
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 0.05km/year (Similar ecology to <i>O.curzoniae</i>)		
Status: MODELLABLE; Included in final analysis: $$		


Summary: The Ladak pika's bioclimatic envelope is predicted to decrease by 70% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 1400 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by mean annual precipitation (47.9%), minimum precipitation (41.7%) and minimum temperature (5.7%).

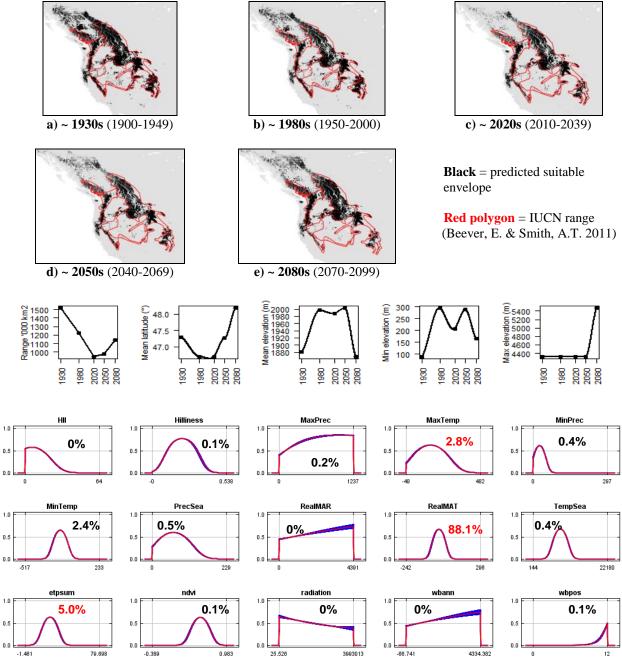
#54 – Large-eared pika (Ochotona macrotis)
n = 49
Expert: Nishma Dahal, National Centre for Biological
Sciences, India
Expert evaluation: Medium
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 1km/year (Similar ecology to <i>O.roylei</i>)
Status: MODELLABLE; Included in final analysis: √


Model evaluation metric	
AUC	0.94
Omission rate	0.10
Sensitivity	0.90
Specificity	0.99
Proportion correct	0.99
Карра	0.43
True Skill Statistic	0.89

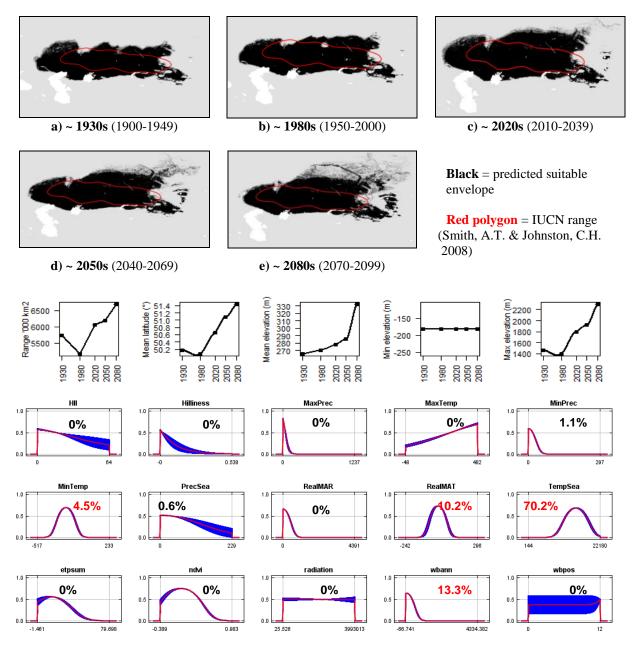
Summary: The Large-eared pika's bioclimatic envelope is predicted to decrease by 40% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~880m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (87.3%), minimum temperature (5.8%) and mean annual temperature (2.1%).


#55 – Nubra's pika (Ochotona nubrica)	Model evaluation metric	
	AUC	0.99
n = 13	Omission rate	0.00
Expert: Nishma Dahal, National Centre for Biological	Sensitivity	1.00
Sciences, India	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
A	Карра	0.35
Data: Only modern	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 0.05km/year (Similar ecology to <i>O.curzoniae</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

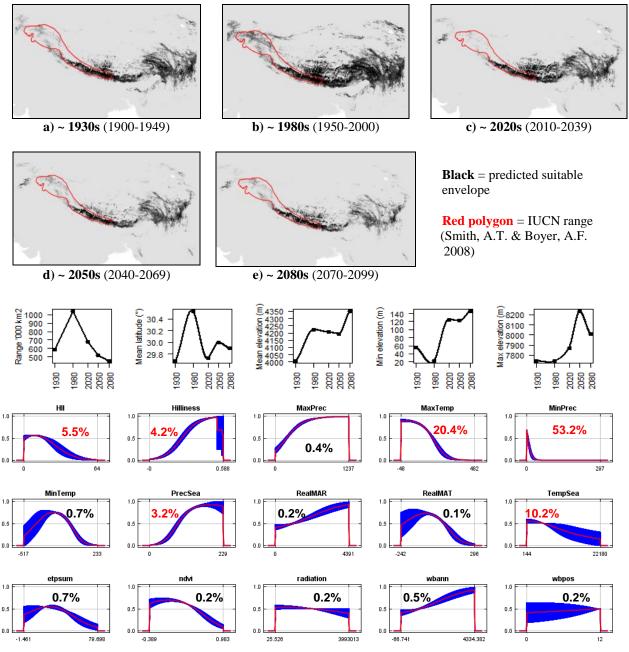
Summary: The Nubra's pika's bioclimatic envelope is predicted to increase by 1% with no latitudinal polewards shift, but a mean increase in elevation of ~200m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (76.1%) and mean annual temperature (20.9%).


#56 – Pallas's pika (Ochotona pallasi)	Model evaluation r	Model evaluation metric	
	AUC	0.99	
n = 19	Omission rate	0.00	
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Only modern	Proportion correct	0.99	
Envelope: Climatic and habitat	Карра	0.46	
1	True Skill Statistic	0.99	
Dispersal distance: 10km/year (Sokolov, V.E. <i>et al.</i> , 2009)			
Status: MODELLABLE; Included in final analysis: $$			

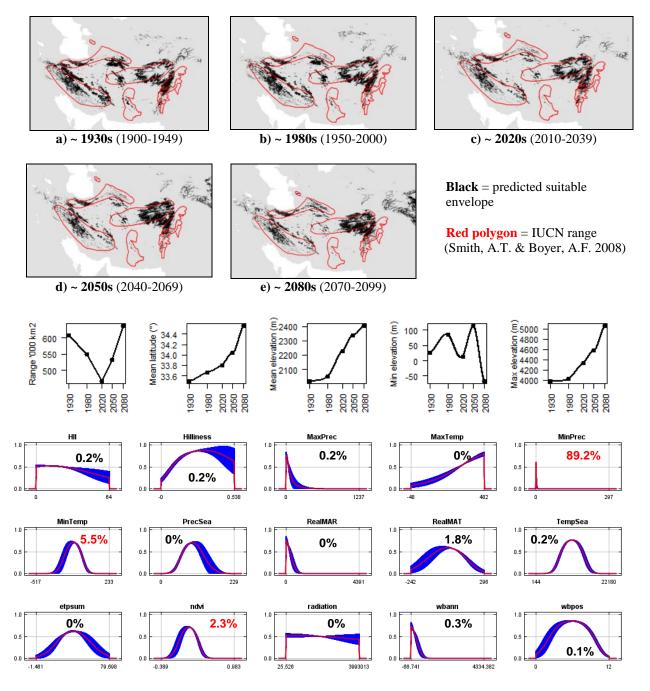
Summary: The Pallas's pika's bioclimatic envelope is predicted to decrease by 60% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~40m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (46.1%), mean annual precipitation (35.5%), mean annual temperature (9.4%) and minimum temperature (6.7%).


American pika (Ochotona princeps) Model evaluation		netric
	AUC	0.95
n = 670	Omission rate	0.10
Expert: Andrew Smith, Arizona State University	Sensitivity	0.9
Expert evaluation: Medium	Specificity	0.99
Data: Only modern	Proportion correct	0.98
	Карра	0.87
Envelope: Climatic and habitat	True Skill Statistic	0.89
Dispersal distance: 16.1km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

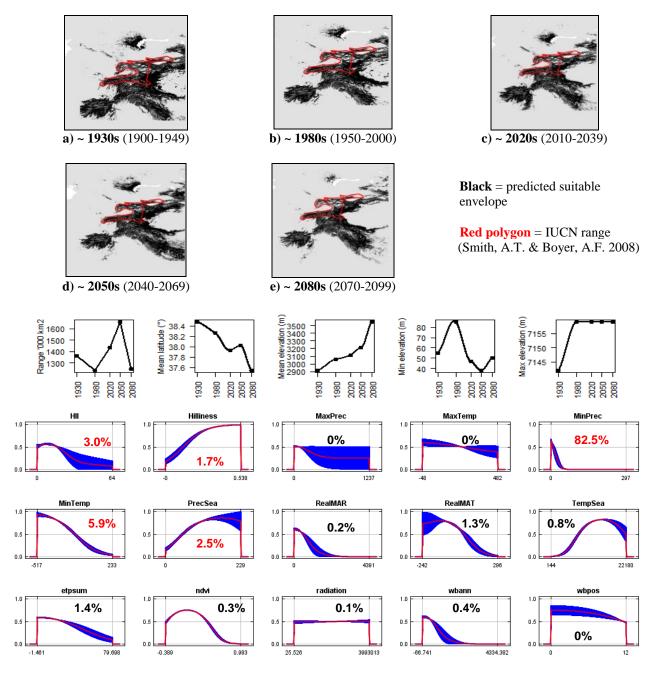
Summary: The American pika's bioclimatic envelope is predicted to decrease by 25% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 10 m driven by an decrease in minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (88.1%), annual evapotranspiration (5.0%) and maximum temperature (2.8%).


#58 – Little pika (Ochotona pusilla)	Model evaluation	Model evaluation metric	
	AUC	0.93	
n = 30	Omission rate	0.13	
Expert: Andrew Smith, Arizona State University	Sensitivity	0.87	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.58	
Envelope: Climatic and habitat	True Skill Statistic	0.86	
Dispersal distance: 4km/year (Sokolov, V.E. et al., 2009)			
Status: MODELLABLE; Included in final analysis: $$			

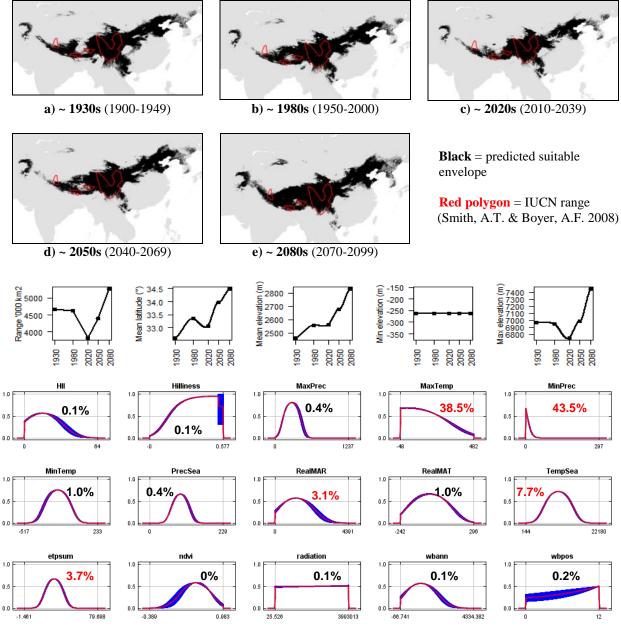
Summary: The Little pika's bioclimatic envelope is predicted to increase by 20% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 70 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (70.2%), annual water balance (13.3%), mean annual temperature (10.2%) and minimum temperature (4.5%).


#59 – Royle's pika (Ochotona roylei)	Model evaluation	Model evaluation metric	
	AUC	0.98	
n = 22	Omission rate	0.05	
Expert: Sabuj Bhattacharya, Wildlife Institute of India	Sensitivity	0.95	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.76	
Envelope: Climatic and habitat	True Skill Statistic	0.95	
Dispersal distance: 1km/year (Expert)			
Status: MODELLABLE; Included in final analysis: $$			

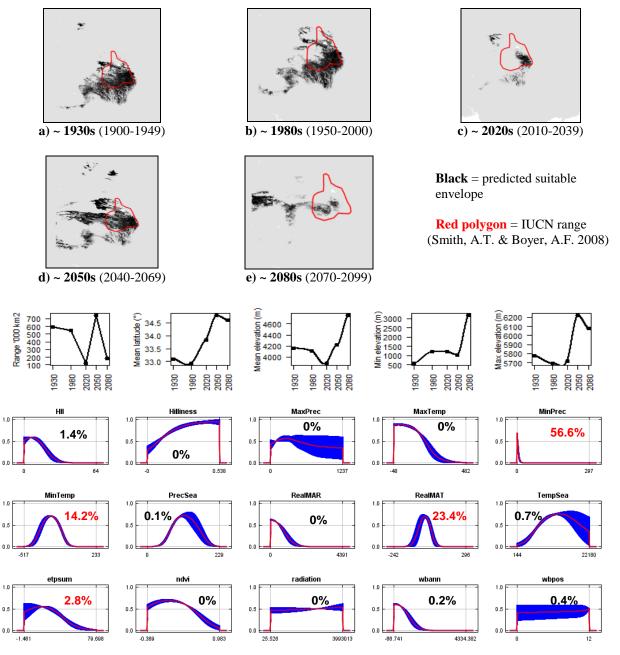
Summary: The Royle's pika's bioclimatic envelope is predicted to decrease by 20% with no latitudinal polewards shift and a mean increase in elevation of \sim 340m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (53.2%), maximum temperature (20.4%), temperature seasonality (10.2%), human influence index (5.5%), surface roughness index (4.2%) and precipitation seasonality (3.2%).


#60 – Afghan pika (Ochotona rufescens)	Model evaluation 1	Model evaluation metric	
	AUC	0.99	
n = 17	Omission rate	0.00	
Expert: Chelmala Srinivasulu, Osmania University, India	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.74	
Envelope: Climatic and habitat	True Skill Statistic	0.99	
Dispersal distance: 3km/year (Asian pikas, range 1-15)			
Status: MODELLABLE; Included in final analysis: $$			

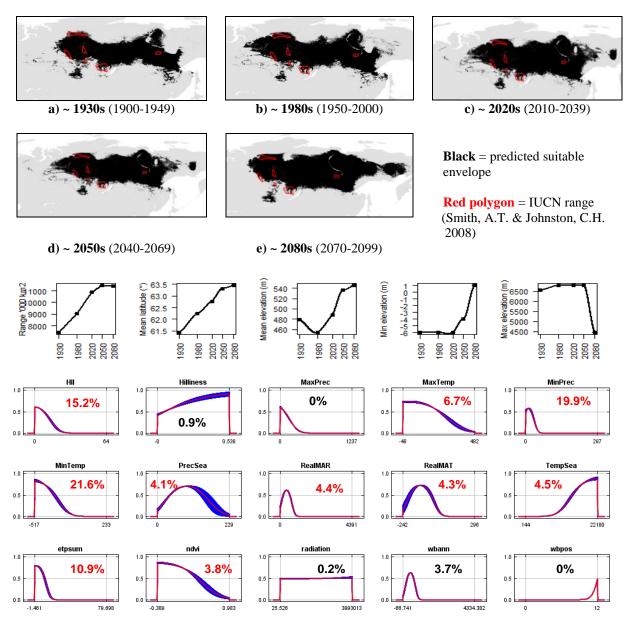
Summary: The Afghan pika's bioclimatic envelope is predicted to increase by 5% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 380 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (89.2%), minimum temperature (5.5%) and normalised difference vegetation index (2.3%).


#61 – Turkestan red pika (Ochotona rutila)	Model evaluation metric	
	AUC	0.99
n = 13	Omission rate	0.00
Expert: Andrey Lissovsky, Zoological Museum of Moscow	Sensitivity	1.00
State University	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
•	Карра	0.25
Data: Modern and historic	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 3km/year (Asian pikas, range 1-15)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Turkestan red pika's bioclimatic envelope is predicted to decrease by 10% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 630 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (82.5%), minimum temperature (5.9%), human influence index (3.0%), precipitation seasonality (2.5%) and surface roughness index (1.7%).

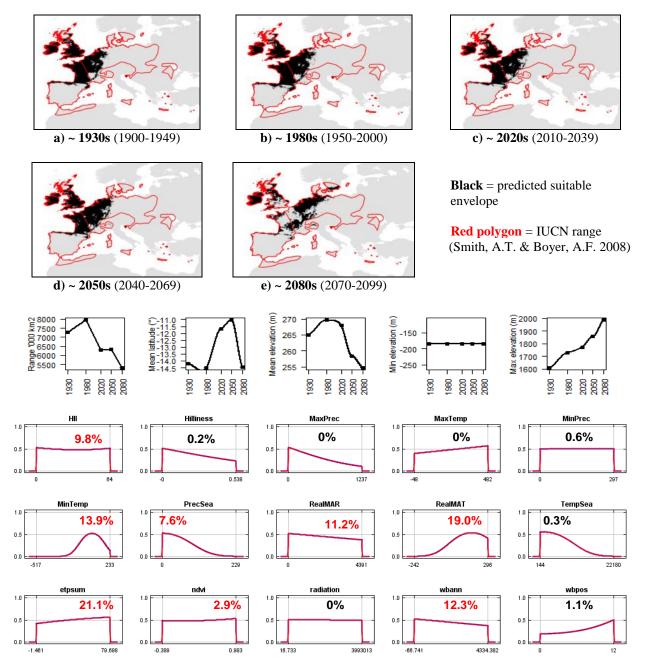

#62 – Moupin pika (Ochotona thibetana)	Model evaluation metric	
	AUC	0.93
n = 95	Omission rate	0.13
Expert: Deyan Ge, Institute of Zoology, Chinese Academy of	Sensitivity	0.87
Sciences	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
•	Карра	0.52
Data: Modern and historic	True Skill Statistic	0.86
Envelope: Climatic and habitat		
Dispersal distance: 2km/year (Similar ecology to <i>O.roylei</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Moupin pika's bioclimatic envelope is predicted to increase by 10% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 370 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (43.5%), maximum temperature (38.5%), temperature seasonality (7.7%), annual evapotranspiration (3.7%) and mean annual precipitation (3.1%).

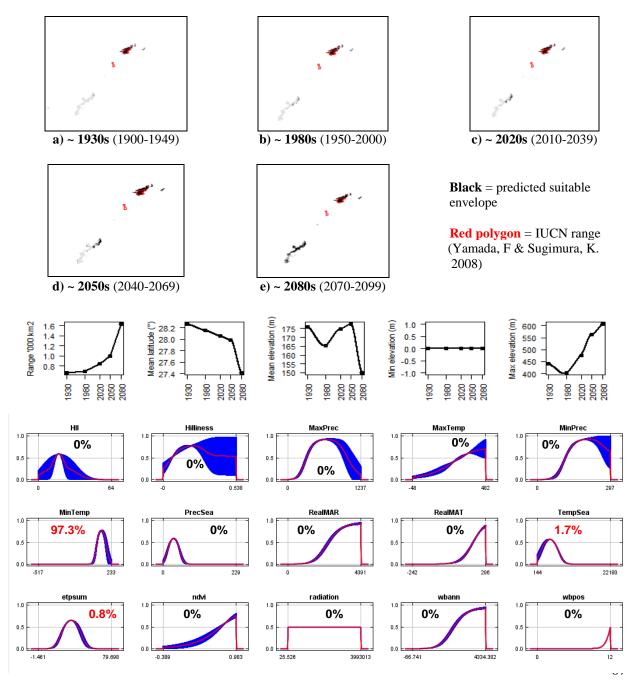

#63 – Thomas's pika (Ochotona thomasi)	Model evaluation r	Model evaluation metric	
	AUC	0.99	
n = 16	Omission rate	0.00	
Expert: Andrew Smith, Arizona State University	Sensitivity	1.00	
Expert evaluation: Good	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
Envelope: Climatic and habitat	Карра	0.58	
•	True Skill Statistic	0.99	
Dispersal distance: 1km/year (Similar ecology to <i>O.koslowi</i>)			
Status: MODELLABLE; Included in final analysis: $$			

Summary: The Thomas's pika's bioclimatic envelope is predicted to decrease by 70% with a $\sim 1.5^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 590 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by minimum precipitation (56.6%), mean annual temperature (23.4%), minimum temperature (14.2%) and evapotranspiration (2.8%).

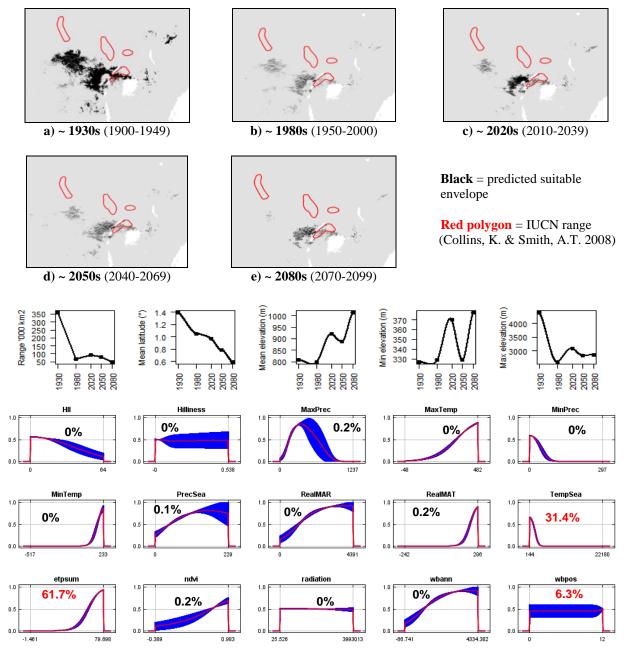
#64 – Turuchan pika (Ochotona turuchanensis)	Model evaluation	metric
	AUC	0.9
n = 30	Omission rate	0.1
Expert: Andrey Lissovsky, Zoological Museum of Moscow	Sensitivity	0.8
State University	Specificity	0.9
Expert evaluation: Medium	Proportion correct	0.9
	Карра	0.5
Data: Modern and historic	True Skill Statistic	0.8
Envelope: Climatic and habitat		
Dispersal distance: 15km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		


Summary: The Turuchan pika's bioclimatic envelope is predicted to increase by 50% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 70 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by minimum temperature (21.6%), minimum precipitation (19.9%), human influence index (15.2%), annual evapotranspiration (10.9%).

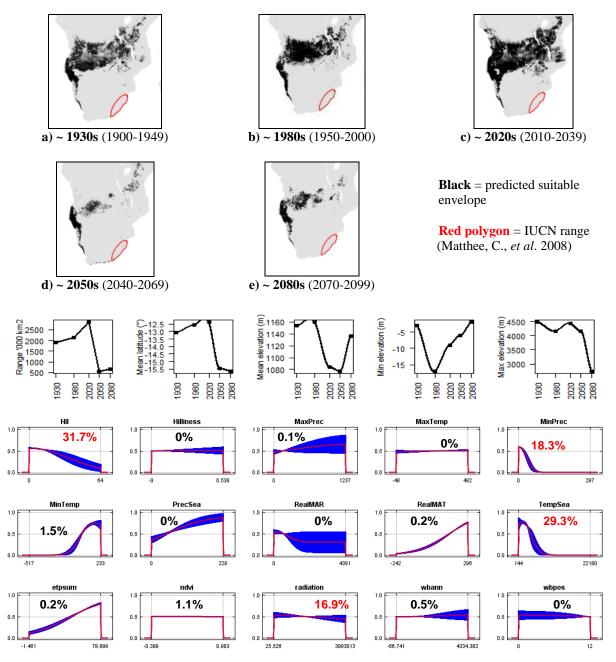
0.93 0.13 0.87 0.99 0.99 **0.50** 0.86


#65 – European rabbit (Oryctolagus cunciculus)	Model evaluation metric	
	AUC	0.62
n = 22,712	Omission rate	0.16
Expert: Neil Reid, Queen's University Belfast	Sensitivity	0.84
Expert evaluation: Medium	Specificity	0.39
Data: Modern and historic	Proportion correct	0.62
Envelope: Climatic and habitat	Карра	0.23
L Contraction of the second seco	True Skill Statistic	0.23
Dispersal distance: 1km/year (Expert)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The European rabbit's bioclimatic envelope is predicted to increase by 30% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of $\sim 10m$. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (21.1%), mean annual temperature (19.0%), minimum temperature (13.9%), annual water balance (12.3%), mean annual precipitation (11.2%), human influence index (9.8%), precipitation seasonality (7.6%) and normalised difference vegetation index (2.9%).

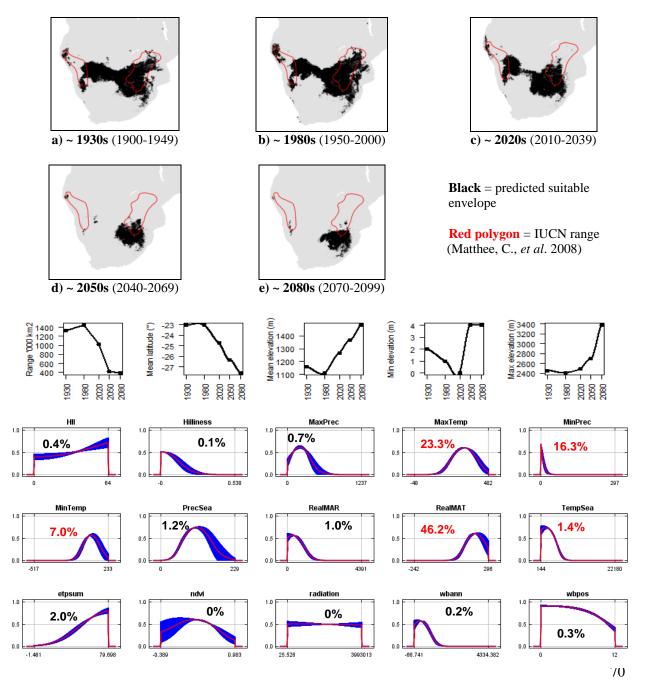

#66 – Amami rabbit (Pentalagus furnessi)	Model evaluation metric	
	AUC	0.99
n = 9	Omission rate	0.00
Expert: Fumio Yamada, Forestry and Forest Products	Sensitivity	0.99
Research Institute, Japan	Specificity	0.99
Expert evaluation: Good	Proportion correct	0.99
1	Карра	0.95
Data: Modern and historic	True Skill Statistic	0.99
Envelope: Climatic and habitat		
Dispersal distance: 0.01km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Amami rabbit's bioclimatic envelope is predicted to increase by 150% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean decrease in elevation of ~ 25 m. 95% of the permutation importance of the model was contributed to by minimum temperature (97.3%), temperature seasonality (1.7%) and annual evapotranspiration (0.8%).

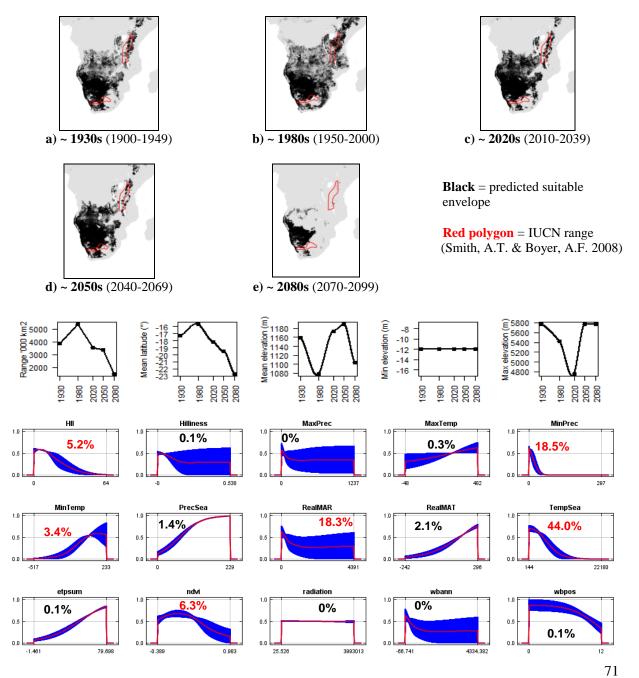

#67 – Bunyoro rabbit (Poelagus marjorita)	Model evaluation metric	
•	AUC	0.99
n = 8	Omission rate	0.00
Expert: David Happold, Australian National University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.99
Data: Only modern	Proportion correct	0.99
	Карра	0.89
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 2km/year (Similar ecology to Pronolagus sp.)		
Status: UNMODELLABLE; Included in final analysis: X		

Summary: The Bunyoro rabbit's bioclimatic envelope is predicted to decrease by 90% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean increase in elevation of ~ 200 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (61.7%), temperature seasonality (31.4%) and number of months with a positive water balance (6.3%).

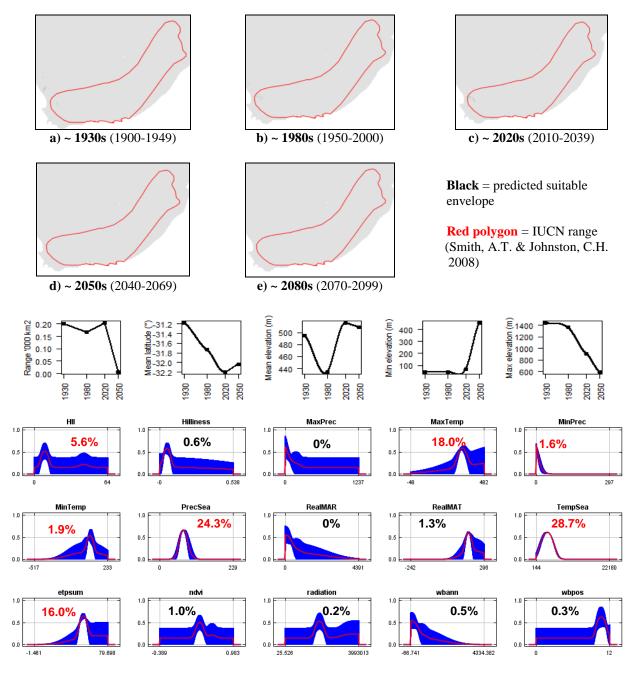
#68 – Greater red rock hare (<i>Pronolagus crassicaudatus</i>)	Model evaluation 1	netric
	AUC	0.9
n = 7	Omission rate	0.0
Expert: Kai Collins, University of Pretoria	Sensitivity	1.0
Expert evaluation: Poor	Specificity	0.9
Data: Only modern	Proportion correct	0.9
Envelope: Climatic and habitat	Карра	0.0
-	True Skill Statistic	0.9
Dispersal distance: 2km/year (Similar ecology to <i>P.randensis</i>)		
Status: UNMODELLABLE; Included in final analysis: X		


Summary: The Greater red rock hare's bioclimatic envelope is predicted to decrease by 65% with a $\sim 3^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of ~ 20 m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by human influence index (31.7%), temperature seasonality (29.3%) solar radiation (16.9%) and minimum precipitation (18.3%).

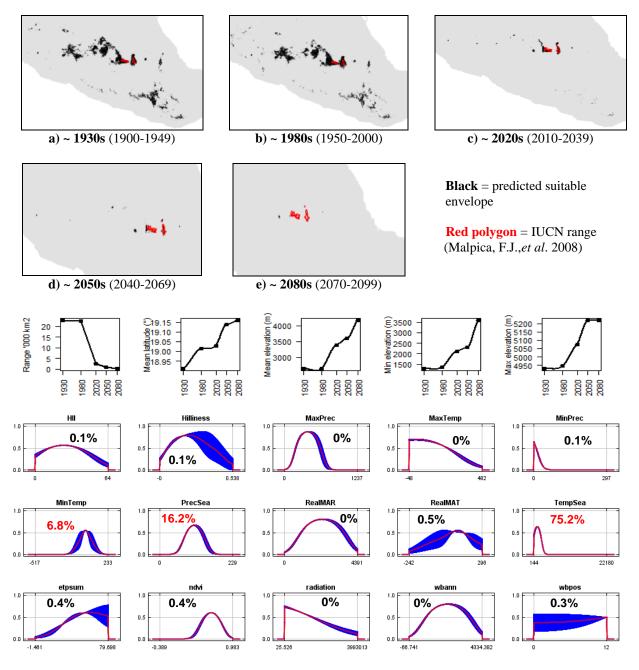
0.99 0.00 1.00 0.98 0.98 **0.06** 0.98


#69 – Jameson's red rock hare (<i>Pronolagus randensis</i>)	Model evaluation metric	
. . .	AUC	0.98
n = 27	Omission rate	0.04
Expert: Kai Collins, University of Pretoria	Sensitivity	0.96
Expert evaluation: Poor	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.55
-	True Skill Statistic	0.96
Dispersal distance: 2km/year (Expert)		
Status: UNMODELLABLE; Included in final analysis: X		

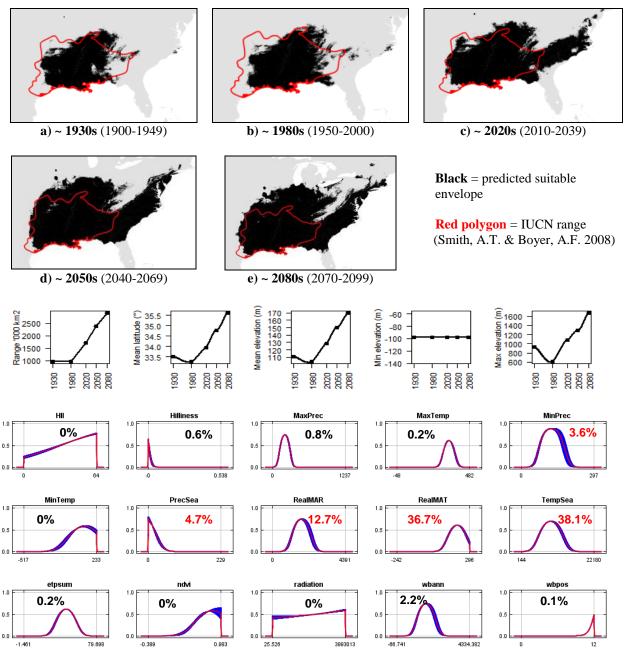
Summary: The Jameson's red rock hare's bioclimatic envelope is predicted to decrease by 70% with a $\sim 5^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 325 m driven by an increase in maximum and minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (46.2%), maximum temperature (23.3%), minimum precipitation (16.3%), minimum temperature (7.0%) and temperature seasonality (1.4%).


#70 – Smith's red rock hare (<i>Pronolagus rupestris</i>)	Model evaluation metric	
	AUC	0.99
n = 9	Omission rate	0.00
Expert: Kai Collins, University of Pretoria	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.98
Data: Modern and historic	Proportion correct	0.98
	Карра	0.07
Envelope: Climatic and habitat	True Skill Statistic	0.98
Dispersal distance: 2km/year (Similar ecology to <i>P.randensis</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

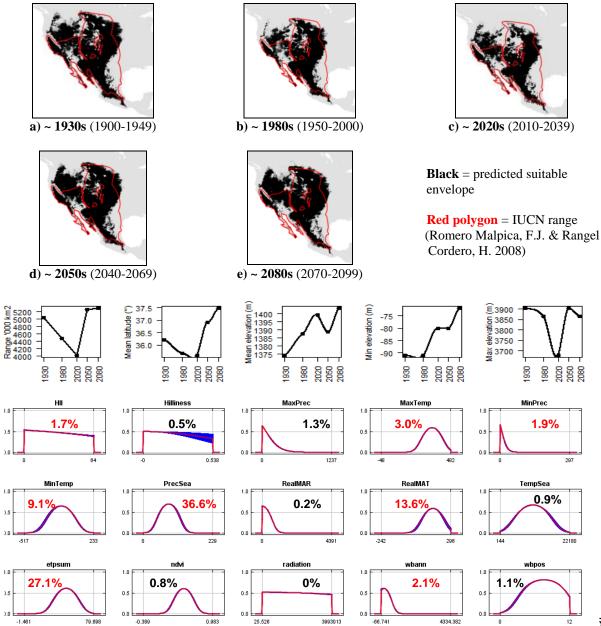
Summary: The Smith's red rock hare's bioclimatic envelope is predicted to decrease by 60% with a $\sim 5^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of $\sim 60m$. 95% of the permutation importance of the model was contributed to by temperature seasonality (44.0%), minimum precipitation (18.5%), mean annual precipitation (18.3%), normalised difference vegetation index (6.3%), human influence index (5.2%) and minimum temperature (3.4%).


#71 – Hewitt's red rock hare (<i>Pronolagus saundersiae</i>)	Model evaluation metric	
	AUC	1.00
n = 9	Omission rate	0.00
Expert: Kai Collins, University of Pretoria	Sensitivity	1.00
Expert evaluation: Poor	Specificity	1.00
Data: Modern and historic	Proportion correct	1.00
	Карра	1.00
Envelope: Climatic and habitat	True Skill Statistic	1.00
Dispersal distance: 2km/year (Similar ecology to <i>P.randensis</i>)		
Status: UNMODELLABLE; Included in final analysis: X		

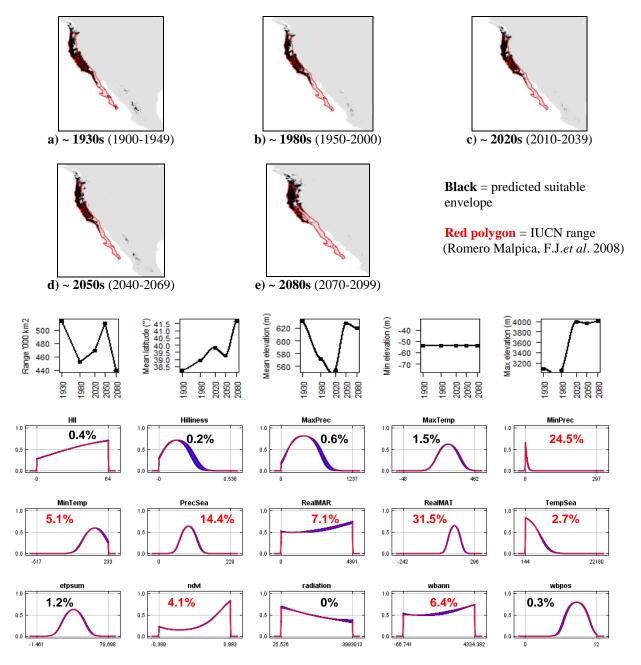
Summary: The Hewitt's red rock hare's bioclimatic envelope is predicted to decrease by 100% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 15 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (28.7%), precipitation seasonality (24.3%), maximum temperature (18.0%), annual evapotranspiration (16.0%), human influence index (5.6%), minimum temperature (1.9%) and minimum precipitation (1.6%).


#72 – Volcano rabbit (Romerolagus diazi)	Model evaluation metric	
	AUC	0.95
n = 31	Omission rate	0.10
Expert: Jose Antonio Martinez-Garcia, Universidad	Sensitivity	0.90
Autónoma Metropolitana, Mexico	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
•	Карра	0.79
Data: Only modern	True Skill Statistic	0.90
Envelope: Climatic and habitat		
Dispersal distance: 0.01km/year (Island species, range 0.01-0.01)		
Status: UNMODELLABLE; Included in final analysis: X		

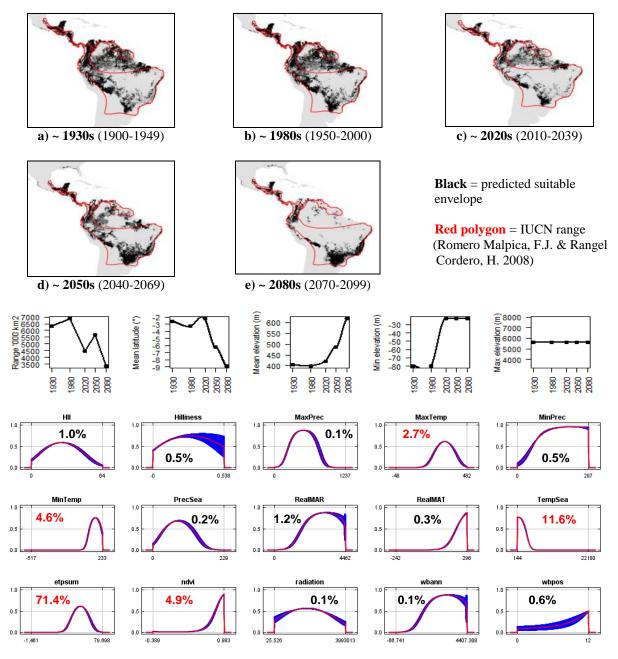
Summary: The Volcano rabbit's bioclimatic envelope is predicted to decrease by 100% with a ~ 0.2° mean latitudinal polewards shift and a mean increase in elevation of ~1500m driven by increases in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (75.2%), precipitation seasonality (16.2%) and minimum temperature (6.8%).


#73 – Swamp rabbit (Sylvilagus aquaticus)	Model evaluation metric	
	AUC	0.95
n = 66	Omission rate	0.09
Expert: Robert Kissell, Memphis State University	Sensitivity	0.91
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
Envelope: Climatic and habitat	Карра	0.76
-	True Skill Statistic	0.91
Dispersal distance: 25km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

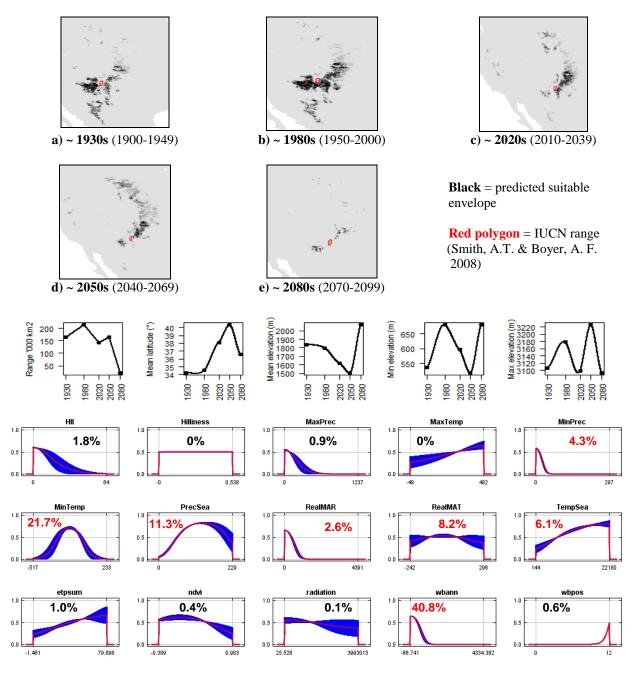
Summary: The Swamp rabbit's bioclimatic envelope is predicted to increase by 200% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 60 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (38.1%), mean annual temperature (36.7%), mean annual precipitation (12.7%), precipitation seasonality (4.7%) and minimum precipitation (3.6%).


#74 – Desert cottontail (Sylvilagus audubonii)	Model evaluation metric	
	AUC	0.94
n = 1040	Omission rate	0.08
Expert: Consuelo Lorenzo, Departamento Conservación de la	Sensitivity	0.92
Biodiversidad, Chiapas	Specificity	0.96
Expert evaluation: Medium	Proportion correct	0.96
A	Карра	0.78
Data: Modern and historic	True Skill Statistic	0.88
Envelope: Climatic and habitat		
Dispersal distance: 7.5km/year (Similar ecology to <i>S.palustris</i>)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Desert cottontail's bioclimatic envelope is predicted to increase by 5% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 30 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (36.6%), annual evapotranspiration (27.1%), mean annual temperature (13.6%), minimum temperature (9.1%), maximum temperature (3.0%), annual water balance (2.1%), minimum precipitation (1.9%) and human influence index (1.7%).

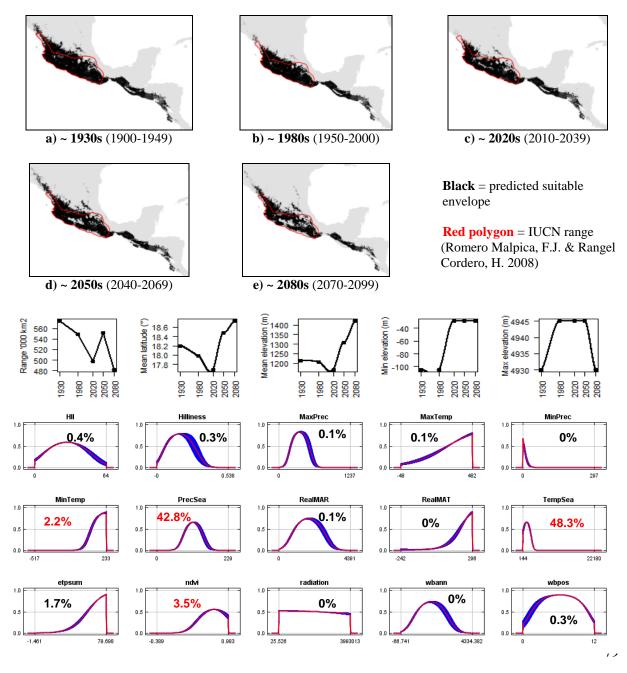

#75 – Brush rabbit (Sylvilagus bachmani)	Model evaluation metric	
	AUC	0.96
n = 263	Omission rate	0.08
Expert: Consuelo Lorenzo, Departamento Conservación de la	Sensitivity	0.92
Biodiversidad, Chiapas	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
A	Карра	0.89
Data: Modern and historic	True Skill Statistic	0.91
Envelope: Climatic and habitat		
Dispersal distance: 3km/year (Similar ecology to <i>S.transitionalis</i>)		
Status: MODELLABLE; Included in final analysis: \checkmark		

Summary: The Brush rabbit's bioclimatic envelope is predicted to decrease by 15% with a $\sim 3^{\circ}$ mean latitudinal polewards shift and a mean decrease in elevation of $\sim 10m$. 95% of the permutation importance of the model was contributed to by mean annual temperature (31.5%), minimum precipitation (24.5%), precipitation seasonality (14.4%), mean annual precipitation (7.1%), annual water balance (6.4%), minimum temperature (5.1%), normalised difference vegetation index (4.1%) and temperature seasonality (2.7%).

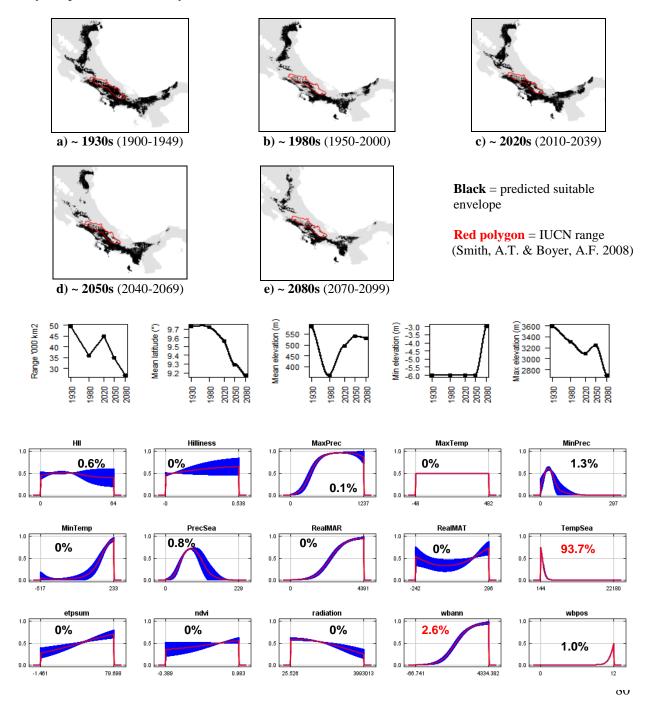

#76 – Forest rabbit (Sylvilagus brasiliensis)	Model evaluation metric	
	AUC	0.95
n = 181	Omission rate	0.10
Expert: Jorge Salazar-Bravo, Texas Tech University	Sensitivity	0.90
Expert evaluation: Medium	Specificity	0.99
Data: Modern and historic	Proportion correct	0.99
	Карра	0.73
Envelope: Climatic and habitat	True Skill Statistic	0.89
Dispersal distance: 7.5km/year (Similar ecology to <i>S.palustris</i>)		
Status: MODELLABLE; Included in final analysis: \checkmark		

Summary: The Forest rabbit's bioclimatic envelope is predicted to decrease by 50% with a $\sim 6^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 210 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (71.4%), temperature seasonality (11.6%), normalised difference vegetation index (4.9%) and minimum temperature (4.6%).

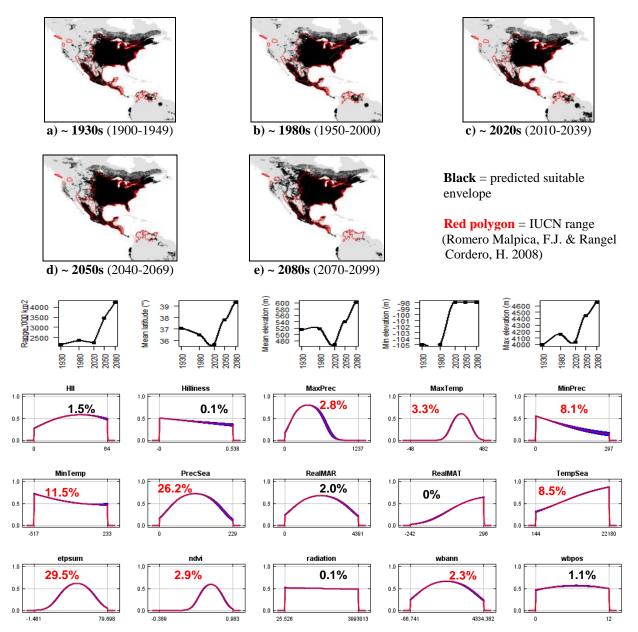
#77 – Manzano mountain cottontail (Sylvilagus cognatus)	Model evaluation	netric	
	AUC	0.99	
n = 7	Omission rate	0.00	
Expert: Jennifer Frey, New Mexico State University	Sensitivity	1.00	
Expert evaluation: Medium	Specificity	0.99	
Data: Modern and historic	Proportion correct	0.99	
	Карра	0.52	
Envelope: Climatic and habitat	True Skill Statistic	0.99	
Dispersal distance: 0.01km/year (Similar ecology to <i>R.diazi</i>)			
Status: MODELLABLE; Included in final analysis: $$			


Summary: The Manzano mountain cottontail's bioclimatic envelope is predicted to decrease by 90% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 230 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by annual water balance (40.8%), minimum temperature (21.7%), precipitation seasonality (11.3%), mean annual temperature (8.2%), temperature seasonality (6.1%), minimum precipitation (4.3%) and mean annual precipitation (2.6%).

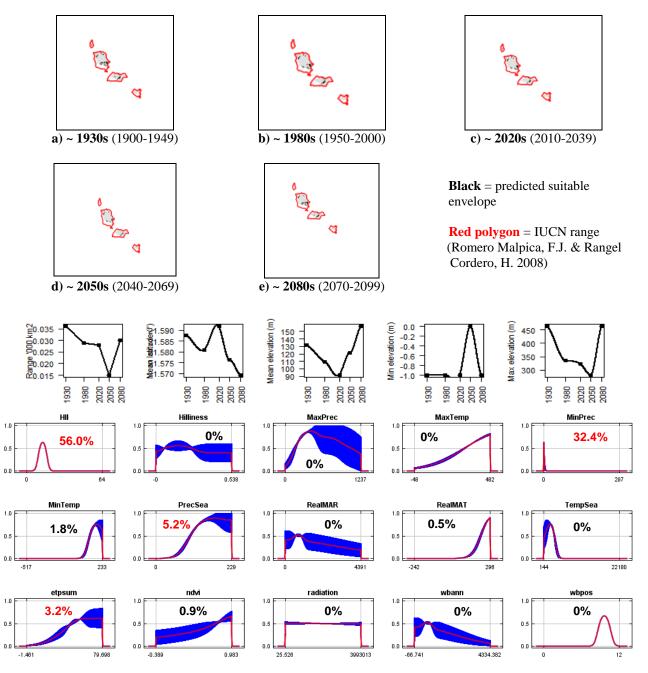
#78 – Mexican cottontail (Sylvilagus cunicularius)	Model evaluation r	netric
	AUC	0.9
n = 76	Omission rate	0.1
Expert: Jorge Vazquez, Laboratorio de Ecología del	Sensitivity	0.9
Comportamiento, UAT-UNAM	Specificity	0.9
Expert evaluation: Medium	Proportion correct	0.9
•	Карра	0.7
Data: Only modern	True Skill Statistic	0.8
Envelope: Climatic and habitat		
Dispersal distance: 7.5km/year (Similar ecology to <i>S.palustris</i>)		
Status: MODELLABLE; Included in final analysis: $$		


0.95 0.10 0.90 0.99 0.99 **0.73** 0.89

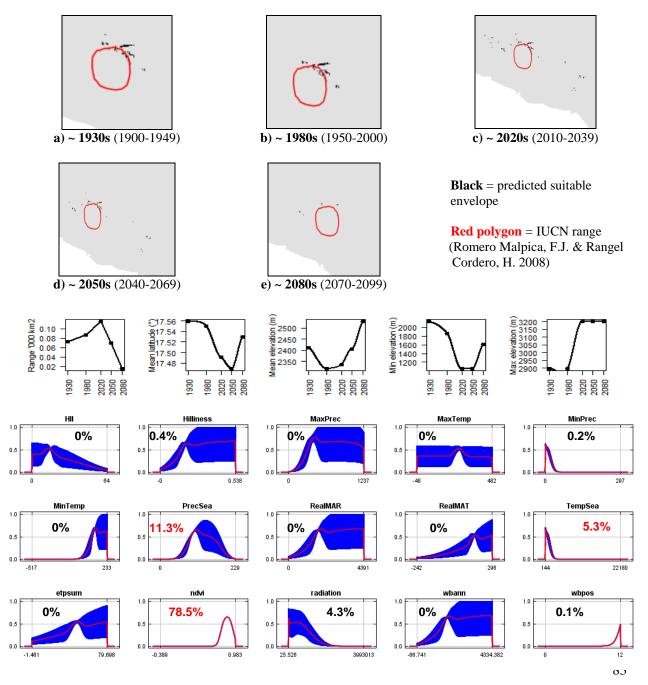
Summary: The Mexican cottontail's bioclimatic envelope is predicted to decrease by 15% with a $\sim 0.5^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 200 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (48.3%), precipitation seasonality (42.8%), normalised difference vegetation index (3.5%) and minimum temperature (2.2%).


#79 – Dice's cottontail (Sylvilagus dicei)	Model evaluation metric	
	AUC	0.99
n = 8	Omission rate	0.00
Expert: Jan Schipper, Arizona State University	Sensitivity	1.00
Expert evaluation: Poor	Specificity	0.99
Data: Only modern	Proportion correct	0.99
	Карра	0.73
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 0.01km/year (Similar ecology to S.cognatus)		
Status: UNMODELLABLE: Included in final analysis: X		

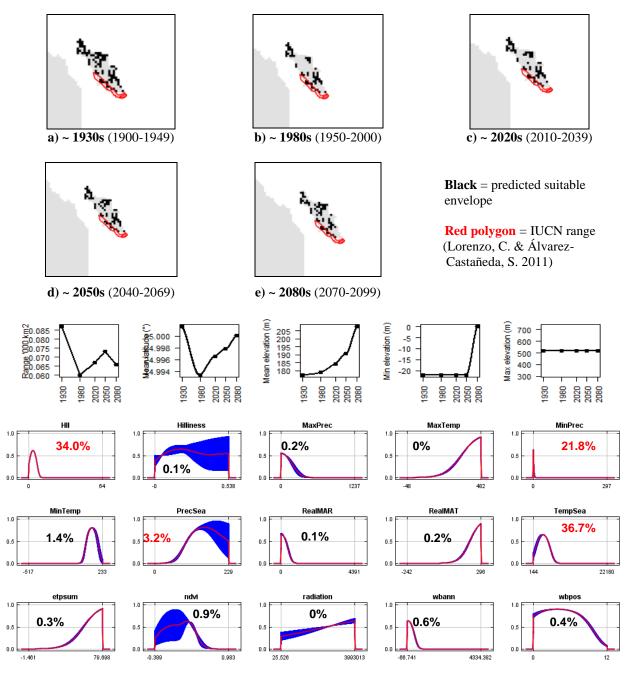
Summary: The Dice's cottontail's bioclimatic envelope is predicted to decrease by 50% with a $\sim 1^{\circ}$ mean latitudinal shift towards the Equator and a mean decrease in elevation of ~ 50 m driven by a decrease in maximum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (93.7%) and annual water balance (2.6%).


#80 – Eastern cottontail (Sylvilagus floridanus)	Model evaluation r	netric
	AUC	0.92
n = 1104	Omission rate	0.09
Expert: Jorge Vazquez, Laboratorio de Ecología del	Sensitivity	0.91
Comportamiento, UAT-UNAM	Specificity	0.93
Expert evaluation: Medium	Proportion correct	0.93
	Карра	0.69
Data: Modern and historic	True Skill Statistic	0.84
Envelope: Climatic and habitat		
Dispersal distance: 7.5km/year (Similar ecology to S.palustris)		
Status: MODELLABLE; Included in final analysis: \checkmark		

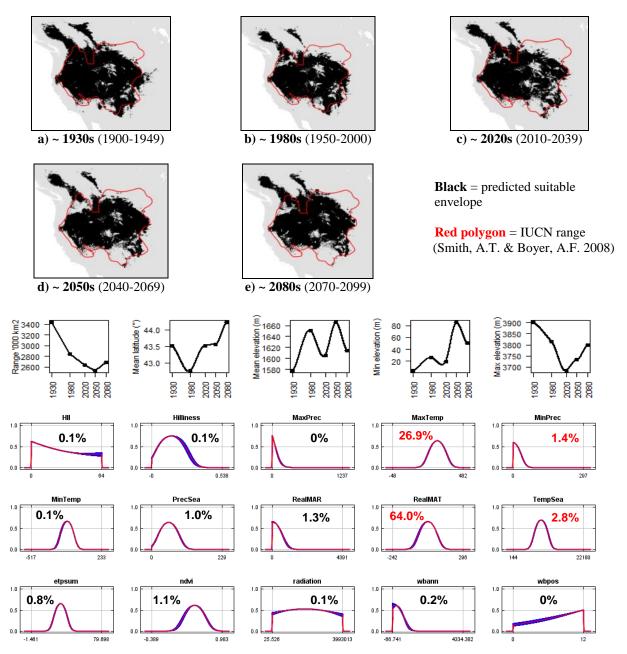
Summary: The Eastern cottontail's bioclimatic envelope is predicted to increase by 20% with a $\sim 2^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 90 m driven by an increase in minimum and maximum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (29.5%), precipitation seasonality (26.2%), minimum temperature (11.5%), temperature seasonality (8.5%), minimum precipitation (8.1%), maximum temperature (3.3%), normalised difference vegetation index (2.9%), maximum precipitation (2.8%) and annual water balance (2.3%).


#81 – Tres Marias cottontail (Sylvilagus graysoni)	Model evaluation metric	
	AUC	1.00
$\boldsymbol{n}=\boldsymbol{6}$	Omission rate	0.00
Expert: Consuelo Lorenzo, Departamento Conservación de la	Sensitivity	1.00
Biodiversidad, Chiapas	Specificity	1.00
Expert evaluation: Good	Proportion correct	1.00
Data: Modern and historic	Карра	1.00
	True Skill Statistic	1.00
Envelope: Climatic and habitat		
Dispersal distance: 0.01km/year (Island species, range 0.01-0.01)		
Status: MODELLABLE; Included in final analysis: $$		

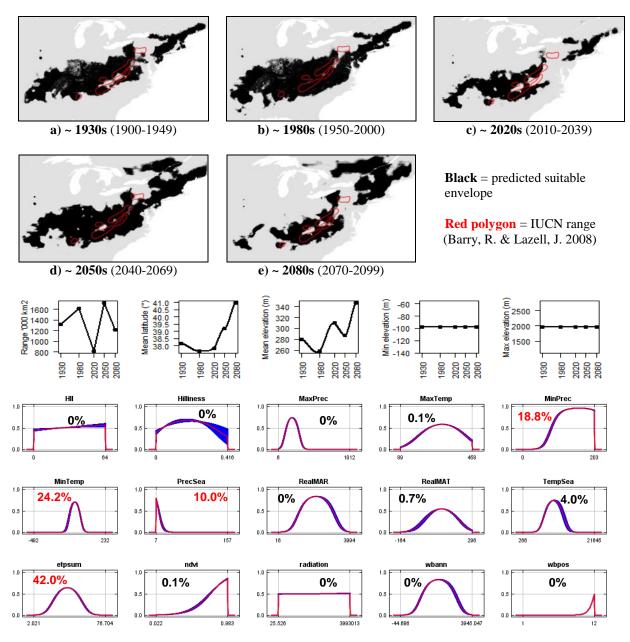
Summary: The Tres Marias cottontail's bioclimatic envelope is predicted to decrease by 20% with a no latitudinal polewards shift and a mean increase in elevation of ~25m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by human influence index (56.0%), minimum precipitation (32.4%), precipitation seasonality (5.2%) and annual evapotranspiration (3.2%).


#82 – Omilteme cottontail (Sylvilagus insonus)	ne cottontail (Sylvilagus insonus) Model evaluation metric	
	AUC	1.00
n = 3	Omission rate	0.00
Expert: Alejandro Velazquez, UNAM-Canada	Sensitivity	1.00
Expert evaluation: Good	Specificity	1.00
Data: Only modern	Proportion correct	1.00
Envelope: Climatic and habitat	Карра	1.00
•	True Skill Statistic	1.00
Dispersal distance: 0.01km/year (Similar ecology to <i>S.dicei</i>)		
Status: MODELLABLE; Included in final analysis: $$		

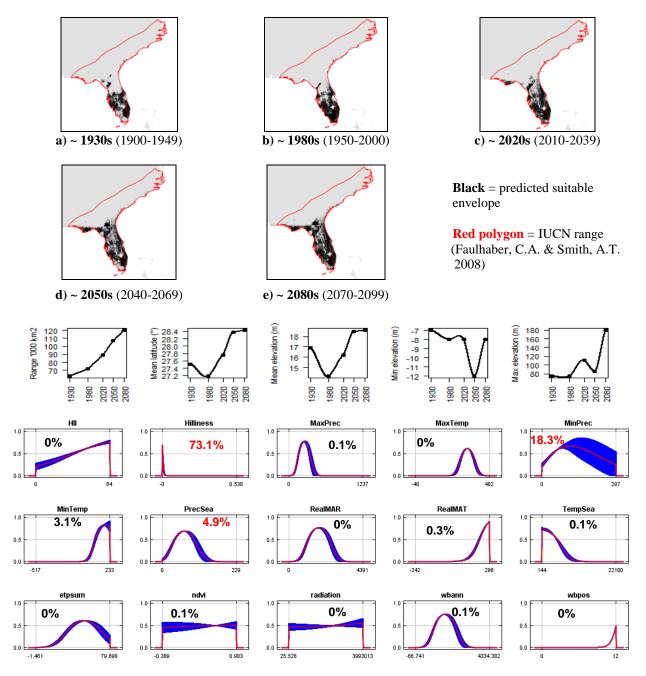
Summary: The Omilteme cottontail's bioclimatic envelope is predicted to decrease by 80% with a no latitudinal polewards shift and a mean increase in elevation of ~120m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by normalised difference vegetation index (78.5%), precipitation seasonality (11.3%) and temperature seasonality (5.3%).


#83 – San Jose brush rabbit (<i>Sylvilagus mansuetus</i>) n = 9	AUC Omission rate Sensitivity	$1.00 \\ 0.00 \\ 1.00$
Expert: Tamara Rioja Pardela, Universidad de Ciencias y	Specificity	1.00
Artes de Chiapas, Mexico Expert evaluation: Good	Proportion correct Kappa True Skill Statistic	1.00 1.00 1.00
Data: Only modern Envelope: Climatic and habitat	The Skill Statistic	1.00
Dispersal distance: 0.01km/year (Island species, range 0.01-0.01) Status: MODELLABLE; Included in final analysis: $$		

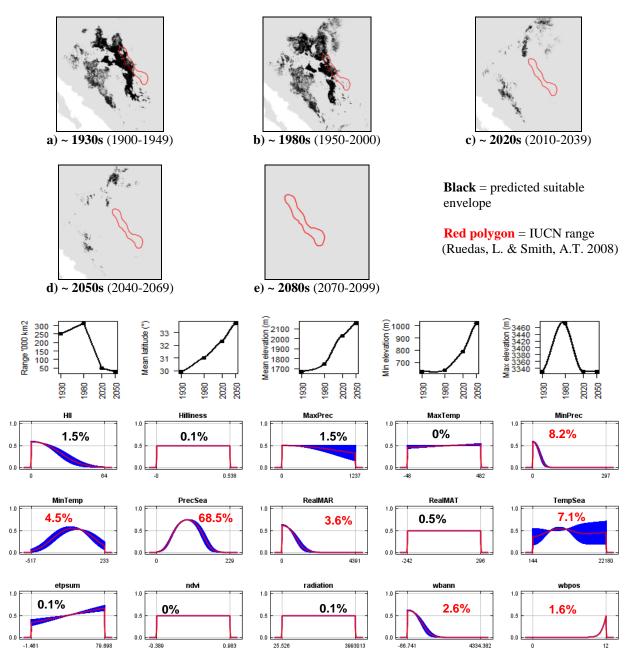
Summary: The San Jose brush rabbit's bioclimatic envelope is predicted to decrease by 25% with a no latitudinal polewards shift and a mean increase in elevation of \sim 30m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (36.7%), human influence index (34.0%), minimum precipitation (21.8%) and precipitation seasonality (3.2%).


#84 – Mountain cottontail (Sylvilagus nuttallii)	AUC	0.95
	Omission rate	0.09
n = 290	Sensitivity	0.91
Expert: Jennifer Frey, New Mexico State University	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
Data: Modern and historic	Kappa	0.78
Envelope: Climatic and habitat	True Skill Statistic	0.90
Dispersal distance: 7.5km/year (Similar ecology to <i>S.palustris</i>)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Mountain cottontail's bioclimatic envelope is predicted to decrease by 20% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 40 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by mean annual temperature (64.0%), maximum temperature (26.9%), temperature seasonality (2.8%) and minimum precipitation (1.4%).

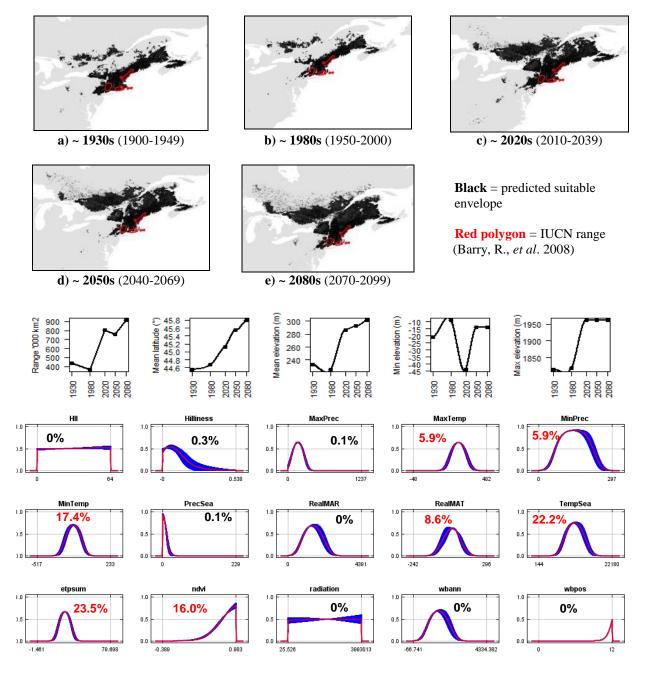

#85 – Appalachian cottontail (Sylvilagus obscurus)	AUC	0.97
	Omission rate	0.05
n = 39	Sensitivity	0.95
Expert: Michael Barbour, Alabama Natural Heritage Program	Specificity	0.99
Expert evaluation: Medium	Proportion correct	0.99
Data: Modern and historic	Kappa	0.73
Envelope: Climatic only	True Skill Statistic	0.95
Dispersal distance: 0.01km/year (Similar ecology to <i>S.dicei</i>)		
Status: MODELLABLE; Included in final analysis: $$		

Summary: The Appalachian cottontail's bioclimatic envelope is predicted to decrease by 10% with a \sim 3° mean latitudinal polewards shift and a mean increase in elevation of \sim 70m. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (42.0%), minimum temperature (24.2%), minimum precipitation (18.8%) and precipitation seasonality (10.0%).


#86 – Marsh rabbit (Sylvilagus palustris)	AUC	0.99
	Omission rate	0.00
n = 25	Sensitivity	1.00
Expert: Bob McCleery, University of Florida	Specificity	0.99
Expert evaluation: Good	Proportion correct	0.99
Data: Only modern	Kappa	0.75
Envelope: Climatic and habitat	True Skill Statistic	0.99
Dispersal distance: 7.5km/year (Expert)		
Status: MODELLABLE; Included in final analysis: $$		

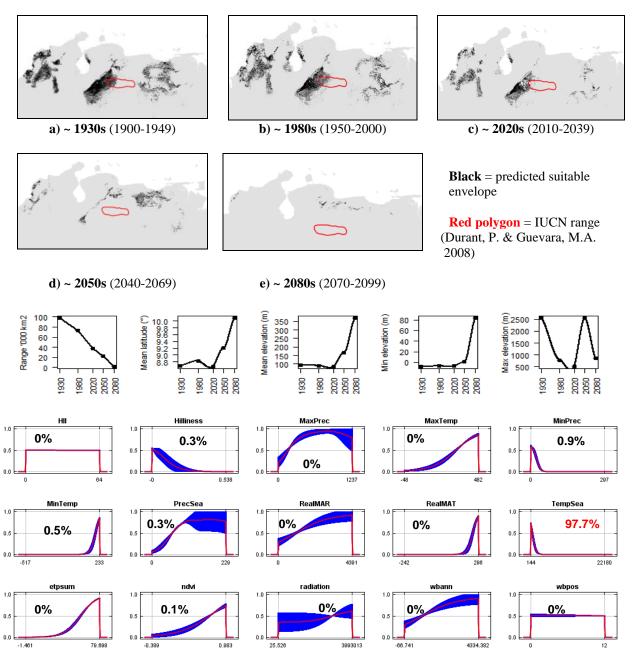
Summary: The Marsh rabbit's bioclimatic envelope is predicted to increase by 90% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of $\sim 2m$ driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by surface roughness index (73.1%), minimum precipitation (18.3%) and precipitation seasonality (4.9%).

#87 – Robust cottontail (Sylvilagus robustus)	AUC	0.94
	Omission rate	0.11
n = 9	Sensitivity	0.89
Expert: Dana Lee, Oklahoma State University	Specificity	0.99
Expert evaluation: Poor	Proportion correct	0.99
Data: Modern and historic	Карра	0.27
Envelope: Climatic and habitat	True Skill Statistic	0.88
Dispersal distance: 0.01km/year (Similar ecology to <i>S.dicei</i>)		
Status: UNMODELLABLE; Included in final analysis: X		


Summary: The Robust cottontail's bioclimatic envelope is predicted to decrease by 90% with a $\sim 4^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 480 m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by precipitation seasonality (68.5%), minimum precipitation (8.2%), temperature seasonality (7.1%), minimum temperature (4.5%), mean annual precipitation (3.6%), annual water balance (2.6%) and number of months with a positive water balance (1.6%).

#88 – New England cottontail (Sylvilagus transitionalis)
n = 18
Expert: John Litvaitis, University of New Hampshire
Expert evaluation: Medium
Data: Modern and historic
Envelope: Climatic and habitat
Dispersal distance: 3km/year (Expert)
Status: MODELLABLE; Included in final analysis: $$

AUC	0.99
Omission rate	0.00
Sensitivity	1.00
Specificity	0.99
Proportion correct	0.99
Карра	0.68
True Skill Statistic	0.99


Summary: The New England cottontail's bioclimatic envelope is predicted to increase by 110% with a $\sim 1^{\circ}$ mean latitudinal polewards shift and a mean increase in elevation of ~ 70 m driven by an increase in maximum elevation. 95% of the permutation importance of the model was contributed to by annual evapotranspiration (23.5%), temperature seasonality (22.2%), minimum temperature (17.4%), normalised difference vegetation index (16.0%), mean annual temperature (8.6%), maximum temperature (5.9%) and minimum precipitation (5.9%).

#89 – Venezuelan lowland rabbit (Sylvilagus varynaensis)
n = 6
Expert: Daniel Lew, Venezuelan Institute of Scientific
Research, Ecology Centre, Biodiversity Unit
Expert evaluation: Poor
Data: Only modern
Envelope: Climatic and habitat
Dispersal distance: 3km/year (Similar ecology to <i>S.transitionalis</i>)
Status: UNMODELLABLE; Included in final analysis: X

AUC0.99Omission rate0.00Sensitivity1.00Specificity0.99Proportion correct0.99Kappa0.92True Skill Statistic0.99

Summary: The Venezuelan lowland rabbit's bioclimatic envelope is predicted to decrease by 100% with a ~1.5° mean latitudinal polewards shift and a mean increase in elevation of ~275m driven by an increase in minimum elevation. 95% of the permutation importance of the model was contributed to by temperature seasonality (97.7%).

