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Response speed-up by homodimerization

To get some analytical insight into the potential role of IAA:IAA dimer formation, we consider the sole
IAA dynamics, and compare the cases when homodimers form or not. In equations, we consider the
populations of monomers I and dimers DII :

dI

dt
= πIδ + θDII − αI2 − δI,

dDII

dt
= αI2 − θDII − δIIDII .

The choice of a production rate written as πIδ is designed to ensure that the (unique) equilibrium found
in absence of homodimerization is equal to the single parameter πI .
Assuming for simplicity that the dimers are at equilibrium (as would occur for instance with large α, θ),
we find:

DII =
α

θ + δII
I2 and θDII − αI2 = −δIIDII =

−δIIα
θ + δII

I2.

Using these relations gives a unique simplified ODE:

dI

dt
= δ(πI − I)− γI2, where γ =

δIIα

θ + δII
.

Two steady states are found by solving a quadratic equation, one of which is positive:

I∗ =
−δ +

√
δ2 + 4δγπI
2γ

. (1)

This steady state I∗ is always smaller than the value πI found for γ = 0:

πI − I∗ =
2πIγ + δ −

√
δ2 + 4δγπI

2γ
>

2πIγ + δ −
√

(δ + 2γπI)2

2γ
= 0.

Moreover, it can be shown by differentiating I∗ that it decreases as a function of γ:

∂I∗

∂γ
=
δ
(√

δ2 + 4γδπI − δ − 2γπI

)
2γ2
√
δ2 + 4γδπI

<
δ
(√

(δ + 2γπI)2 − δ − 2γπI

)
2γ2
√
δ2 + 4γδπI

= 0.

So, the steady state value is maximal without homodimerization and decreases as the latter becomes
more prominent.

As we proceed to assess the influence of γ on the response time of the system, we rescale the production
rate of I to ensure that steady state value is always 1 regardless of γ, i.e. we seek π̃I such that

−δ +
√
δ2 + 4δγπ̃I
2γ

= 1 ⇐⇒ π̃I = 1 +
γ

δ
.

Note that in the limit γ → 0 this gives π̃I = 1 as expected. So, we are now considering the rescaled
system

dI

dt
= (γ + δ)− δI − γI2. (2)
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Let us fix I(0) = 0 for simplicity in the following. For this initial condition, it is possible to derive a
closed form solution for Equation (2)1:

I(t) =
(γ + δ)

(
1− e−(δ+2γ)t

)
γ + δ + γe−(δ+2γ)t

. (3)

Using this closed form solution, it is also possible to compute the time taken to reach a given percentage
0 < ρ < 1 of the equilibrium, i.e. the non-negative time τρ such that the solution I(t) to the equation
above with I(0) = 0 verifies:

I(τρ) = ρ.

Then, a direct calculation gives

τρ =
1

δ + 2γ
log

(
1 +

ρ(δ + 2γ)

(1− ρ)(γ + δ)

)
, (4)

which takes the value 1
δ log

(
1

1−ρ

)
when γ = 0. One can show in fact that this limit is an upper bound

and τρ decreases with γ for any value of ρ (see below). From the expression above, one can also verify
that limγ→∞ τ = 0.

Proof that τρ decreases as a function of γ.
We compute explicitly its partial derivative of τρ, Equation (4), with respect to γ:

∂τρ
∂γ

=
2

(2γ + δ)2
log

(
1− ρ(2γ + δ)

(1 + ρ)γ + δ

)
+

ρδ

(2γ + δ)(γ + δ) ((1 + ρ)γ + δ)

which has the same sign as

(2γ + δ)2

2

∂τρ
∂γ

= log

(
1− ρ(2γ + δ)

(1 + ρ)γ + δ

)
+

ρδ(2γ + δ)

2(γ + δ) ((1 + ρ)γ + δ)
.

Then, from log(1− x) < −x for all 0 < x < 1 we find

(2γ + δ)2

2

∂τρ
∂γ

< − ρ(2γ + δ)

(1 + ρ)γ + δ
+

ρδ(2γ + δ)

2(γ + δ) ((1 + ρ)γ + δ)

=
ρ(2γ + δ)

(1 + ρ)γ + δ

(
−1 +

δ

2(γ + δ)

)
=

ρ(2γ + δ)

(1 + ρ)γ + δ
· −(2γ + δ)

γ + δ
.

And thus
∂τρ
∂γ

<
−2ρ

((1 + ρ)γ + δ) (γ + δ)
< 0. �

Positive feedback and bistability

As discussed in the main text we implemented feedback on ARF+ as follows

• the production rate if I is a constant πI ,

• πA is replaced by πAR.

1Calculated with the aid of sage, see http://www.sagemath.org/
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Furthermore, we considered a specific parameter regime for the main ODE system, which made some
analytic calculations feasible. Namely, we supposed the following:

• the formation of all dimers and promoter-protein complexes are supposed at steady state

• ARF:ARF dimers form at a negligible rate, i.e. αAA ≈ 0 and αAGA
≈ 0.

Under these assumptions, only the three variables A, I and R are non-steady, and straightforward cal-
culations show that their dynamics follow an ODE system of the from

dI

dt
= πI − γ+AI(x)IA− γII(x)I2 − δI(x)I (5)

dA

dt
= πAR− γ−AI(x)IA− δAA (6)

dR

dt
=

ω0A

1 + ω1A+ ω2AI
− δRR, (7)

where

ω0 =
hAαAG
θAG

, ω1 =
αAG
θAG

, ω2 =
αAGαGAI

θAGθGAI
,

and

γII(x) =
−δII(2 + κxx)αII
θII + δII(1 + κxx)

γ+AI(x) =
−δAIαAI

θAI + δAI(1 + κxx)

γ−AI(x) =
−δAIαAI(1 + κxx)

θAI + δAI(1 + κxx)
.

To consider the possible occurrence of multiple stable equilibria, let us compute the steady state
equations of this system. Firstly,

A =
πAR

δA + γ−AI(x)I

and this can be injected in the last equation to give

δRπA(ω1 + ω2I)R2 + (δA + γ−AI(x)I − ω0πA)R = 0,

in other words R ∈
{

0,
ω0πA − δA − γ−AI(x)I

δRπA(ω1 + ω2I)

}
are two steady state solutions for (7). If there exists

a steady state solution I to (5) such that the nonzero steady state R is positive, the system (5)-(7) is
bistable.

As performing these computations analytically is not feasible, we simulated numerically solutions of
(5)-(7) for various parameters, using the formulas above as a guide for intuition. We found some cases
where bistability was occurring, see Figure 10.


