Appendix A: Proof of (12)

The solution to the minimization in the first line of (11) is obviously given by

$$
\boldsymbol{\alpha}_{n+1}=\boldsymbol{A}^{-1}\left[\mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\left(\boldsymbol{y}+\boldsymbol{h}_{n}\right)+\rho\left(\boldsymbol{z}_{n}+\boldsymbol{d}_{n}\right)\right]
$$

where

$$
\begin{equation*}
\boldsymbol{A}=\mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*}+\beta\left(\boldsymbol{I}-\boldsymbol{\Psi} \boldsymbol{\Psi}^{*}\right)+\rho \boldsymbol{I} \tag{14}
\end{equation*}
$$

The key step of this proof is to derive the inversion of matrix \boldsymbol{A}. We will use the Sherman-Morrison-Woodbury matrix inversion formula [36]

$$
\begin{equation*}
(\boldsymbol{X}+\boldsymbol{Y} \boldsymbol{Z})^{-1}=\boldsymbol{X}^{-1}-\boldsymbol{X}^{-1} \boldsymbol{Y}\left(\boldsymbol{I}+\boldsymbol{Z} \boldsymbol{X}^{-1} \boldsymbol{Y}\right)^{-1} \boldsymbol{Z} \boldsymbol{X}^{-1} \tag{15}
\end{equation*}
$$

provided that $\left(\boldsymbol{I}+\boldsymbol{Z} \boldsymbol{X}^{-1} \boldsymbol{Y}\right)$ is invertible. We will consider the inverse of the last two terms in (14) as follows

$$
\boldsymbol{B}=\beta\left(\boldsymbol{I}-\boldsymbol{\Psi} \boldsymbol{\Psi}^{*}\right)+\rho \boldsymbol{I}=(\beta+\rho) \boldsymbol{I}-\beta \boldsymbol{\Psi} \mathbf{\Psi}^{*}
$$

Using (15) and the property of a tight frame, we get

$$
\begin{align*}
\boldsymbol{B}^{-1}=\left((\beta+\rho) \boldsymbol{I}-\beta \boldsymbol{\Psi} \boldsymbol{\Psi}^{*}\right)^{-1} & =\frac{1}{\beta+\rho} \boldsymbol{I}+\frac{\beta}{\beta+\rho} \boldsymbol{\Psi}\left(\boldsymbol{I}-\boldsymbol{\Psi}^{*} \frac{\beta}{\beta+\rho} \boldsymbol{\Psi}\right)^{-1} \boldsymbol{\Psi}^{*} \frac{1}{\beta+\rho} \\
& =\frac{1}{\beta+\rho} \boldsymbol{I}+\frac{\beta}{\rho(\beta+\rho)} \boldsymbol{\Psi} \mathbf{\Psi}^{*} \tag{16}
\end{align*}
$$

where we have used the tight frame property $\boldsymbol{\Psi}^{*} \boldsymbol{\Psi}=\boldsymbol{I}$. Then, by using the Sherman-Morrison-Woodbury matrix inversion formula (15) again, the inverse of \boldsymbol{A} in (14) is

$$
\begin{equation*}
\boldsymbol{A}^{-1}=\left(\boldsymbol{B}+\mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*}\right)^{-1}=\boldsymbol{B}^{-1}-\boldsymbol{B}^{-1} \mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\left(\boldsymbol{I}+\boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*} \boldsymbol{B}^{-1} \mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\right)^{-1} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*} \boldsymbol{B}^{-1} \tag{17}
\end{equation*}
$$

Moreover, (16) implies

$$
\left(\boldsymbol{I}+\boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*} \boldsymbol{B}^{-1} \mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\right)^{-1}=\left(\boldsymbol{I}+\boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*}\left(\frac{1}{\beta+\rho} \boldsymbol{I}+\frac{\beta}{\rho(\beta+\rho)} \boldsymbol{\Psi} \boldsymbol{\Psi}^{*}\right) \mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\right)^{-1}=\frac{\rho}{\rho+\mu} \boldsymbol{I}
$$

This together with (17) leads to

$$
\begin{aligned}
\boldsymbol{A}^{-1} & =\frac{1}{\beta+\rho} \boldsymbol{I}+\frac{\beta}{\rho(\beta+\rho)} \boldsymbol{\Psi} \boldsymbol{\Psi}^{*}-\frac{\mu}{\rho(\mu+\rho)} \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}^{*} \\
& =\frac{1}{\rho}\left[\gamma \boldsymbol{I}+(1-\gamma) \boldsymbol{\Psi} \boldsymbol{\Psi}^{*}-\frac{\mu}{\mu+\rho} \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}\right]
\end{aligned}
$$

where we have used $\gamma=\frac{\rho}{\beta+\rho}$ to the role of the balancing parameter β. Finally, the solution of Eq. (17) is

$$
\begin{aligned}
\boldsymbol{\alpha}_{n+1} & =\boldsymbol{A}^{-1}\left[\mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\left(\boldsymbol{y}+\boldsymbol{h}_{n}\right)+\rho\left(\boldsymbol{z}_{n}+\boldsymbol{d}_{n}\right)\right] \\
& =\frac{1}{\rho}\left[\gamma \boldsymbol{I}+(1-\gamma) \boldsymbol{\Psi} \boldsymbol{\Psi}^{*}-\frac{\mu}{\mu+\rho} \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*} \boldsymbol{U} \boldsymbol{F} \boldsymbol{\Psi}\right]\left[\mu \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\left(\boldsymbol{y}+\boldsymbol{h}_{n}\right)+\rho\left(\boldsymbol{z}_{n}+\boldsymbol{d}_{n}\right)\right] \\
& =\frac{\mu}{\mu+\rho} \boldsymbol{\Psi} \boldsymbol{F}^{*} \boldsymbol{U}^{*}\left(\boldsymbol{y}+\boldsymbol{h}_{n}\right)+\gamma\left(\boldsymbol{z}_{n}+\boldsymbol{d}_{n}\right)+\boldsymbol{\Psi} \boldsymbol{F}^{*}\left[(1-\gamma) \boldsymbol{I}-\frac{\mu}{\mu+\rho} \boldsymbol{U}^{*} \boldsymbol{U}\right] \boldsymbol{F} \boldsymbol{\Psi}^{*}\left(\boldsymbol{z}_{n}+\boldsymbol{d}_{n}\right),
\end{aligned}
$$

which concludes the proof.

