Appendix A: Proof of (12)

The solution to the minimization in the first line of (11) is obviously given by
Apt1 = Al [U\I’F*U*(y +hy) + p(zn + dn)] )

where
A=pUPF'UUFY* + (I —99*) 4+ pl. (14)

The key step of this proof is to derive the inversion of matrix A. We will use the Sherman-Morrison-Woodbury
matrix inversion formula [36]
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provided that (I +ZX ~1Y") is invertible. We will consider the inverse of the last two terms in (14) as follows
B=pI-9¥")+pI =(f+p)I—-pE¥T¥".

Using (15) and the property of a tight frame, we get
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where we have used the tight frame property ¥*W = I. Then, by using the Sherman-Morrison-Woodbury
matrix inversion formula (15) again, the inverse of A in (14) is
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Moreover, (16) implies
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This together with (17) leads to
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where we have used v = B%rp to the role of the balancing parameter . Finally, the solution of Eq. (17) is
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which concludes the proof.



