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Supplementary Information

Analysis of the minimal example

The simplicity of the minimal example allows us to analyze formally how the
parameters determine the performance of the different strategies.

Strategy A: Single flux mode For strategy A, the reference case, the demanded
output Γ > 0 is produced by a single flux mode v. Without loss of generality, we assume
τv1 = Γ1, τv2 = Γ2 and set r := Γ2/Γ1 = v2/v1. Using the steady-state assumption
v0 = v1 + v2, we obtain v> = (v0, v1, v2)> = v1 · (1 + r, 1, r)> (again ·> denotes
transposition). Thus, there is only the unknown v1, which has to be maximized in order
to minimize τ(1) = Γ1/v1. From v > 0, we get g = (1, 1, 1)>. Setting the kinetic
parameters to ηj = 1, j = 1, 2, 3, the upper bounds on the fluxes (cf. 6) are given by

ubj := Atot kcj
1

γA + g · γ
= Atot kcj

1

γA + γ0 + γ1 + γ2
, for j = 0, 1, 2.

Maximizing v1 under the constraint v ≤ ub, we obtain v1 = min(ub0/(1 + r), ub1, ub2/r)
or equivalently

τ(1) =
Γ1

v1
= max

(
Γ1 + Γ2

ub0
,

Γ1

ub1
,

Γ2

ub2

)
. (S1)

Strategy B: Switching between two MinModes Next we consider the case
where the two minimal gene sets χ1, χ2 are separately activated in two time intervals
with flux vectors w1, w2. Here w1 is only producing the target metabolite P1 and w2

only P2. Applying the steady-state condition, we get
w1 = (w1

0, w
1
0, 0)>, w2 = (w2

0, 0, w
2
0)>. For w1, we have the upper bounds

ub10 := Atot kc0
1

γA + γ0 + γ1
, ub11 := Atot kc1

1

γA + γ0 + γ1
, ub12 = 0,

whereas as for w2 we get

ub20 := Atot kc0
1

γA + γ0 + γ2
, ub21 = 0, ub22 := Atot kc2

1

γA + γ0 + γ2
.

Maximizing w1
0 resp. w2

0 under the constraint w1 ≤ ub1 resp. w2 ≤ ub2 yields

w1 = min(ub10, ub
1
1)

1
1
0

 and w2 = min(ub20, ub
2
2)

1
0
1

 .
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For the durations, we get

τ1 =
Γ1

min(ub10, ub
1
1)

= max

(
Γ1

ub10
,

Γ1

ub11

)
and τ2 =

Γ2

min(ub20, ub
2
2)

= max

(
Γ2

ub20
,

Γ2

ub22

)
.

(S2)
Whether or not the solution w1 and w2 outperforms the single flux vector v, i.e.,

whether or not τ1 + τ2 < τ(1) depends on the demand Γ and the upper bounds
ub, ub1, ub2. We discuss two cases in more detail.

First suppose ub0 is small, such that τ(1) = (Γ1 + Γ2)/ub0 and ub0 < ub11, ub
2
2. It

follows τ1 < Γ1/ub0, τ2 < Γ2/ub0 and so τ1 + τ2 < τ(1). In other words, switching from
w1 to w2 is more efficient than the single flux mode v.

Second, assume ub0 is large, such that τ(1) = Γ1/ub1 ≥ Γ2/ub2. Using Eqn. ??, we
get (Γ1 + Γ2)/ub0 ≤ Γi/ubi, which implies Γi/ub0 ≤ Γi/ubi, for i = 1, 2. Since
ub0 ≥ ubi ⇔ ubi0 ≥ ubii and using Eqn. ??, we get τi = Γi/ub

i
i, for i = 1, 2. The

switching solution thus has the duration τ1 + τ2 = Γ1/ub
1
1 + Γ2/ub

2
2. As long as Γ2/ub

2
2

is not too small, this will be larger than τ(1) = Γ1/ub1, the duration of the single mode
solution. Taking a closer look at the ratio Γ1/Γ2, we observe that a smaller value of Γ1

and a larger value of Γ2 in this situation are favorable for the the single mode solution.
On the one hand, increasing Γ1 by a factor c > 1 increases also τ(1) by c, whereas
τ1 + τ2 increases by a strictly smaller factor (as long as Γ2 > 0). On the other hand,
decreasing Γ2 has no effect on τ(1), while the duration of the switching solution is
decreased. We conclude that the single mode solution performs best compared to the
switching solution, i.e., τ(1)/(τ1 + τ2) is minimal, if we have equality in our assumption,
i.e., Γ1/ub1 = Γ2/ub2, or equivalently Γ1/Γ2 = ub1/ub2.

Strategies C or D Between the two extreme strategies A and B, there are the
intermediate strategies C and D. Strategy A can be seen as the limit case of strategy C
or D, when τ2 goes to zero. Strategy B is a limit case of C resp. D, when v21 resp v21
vanishes.
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