Sequential Metabolic Phases as a Means to Optimize Cellular Output in a Constant Environment

Aljoscha Palinkas, Sascha Bulik, Alexander Bockmayr, Hermann-Georg Holzhütter

Supplementary Information

Analysis of the minimal example

The simplicity of the minimal example allows us to analyze formally how the parameters determine the performance of the different strategies.

Strategy A: Single flux mode For strategy A, the reference case, the demanded output $\Gamma>0$ is produced by a single flux mode v. Without loss of generality, we assume $\tau v_{1}=\Gamma_{1}, \tau v_{2}=\Gamma_{2}$ and set $r:=\Gamma_{2} / \Gamma_{1}=v_{2} / v_{1}$. Using the steady-state assumption $v_{0}=v_{1}+v_{2}$, we obtain $v^{\top}=\left(v_{0}, v_{1}, v_{2}\right)^{\top}=v_{1} \cdot(1+r, 1, r)^{\top}$ (again.$^{\top}$ denotes transposition). Thus, there is only the unknown v_{1}, which has to be maximized in order to minimize $\tau(1)=\Gamma_{1} / v_{1}$. From $v>0$, we get $g=(1,1,1)^{\top}$. Setting the kinetic parameters to $\eta_{j}=1, j=1,2,3$, the upper bounds on the fluxes (cf. 6) are given by

$$
u b_{j}:=A_{t o t} k c_{j} \frac{1}{\gamma_{A}+g \cdot \gamma}=A_{t o t} k c_{j} \frac{1}{\gamma_{A}+\gamma_{0}+\gamma_{1}+\gamma_{2}}, \text { for } j=0,1,2
$$

Maximizing v_{1} under the constraint $v \leq u b$, we obtain $v_{1}=\min \left(u b_{0} /(1+r), u b_{1}, u b_{2} / r\right)$ or equivalently

$$
\begin{equation*}
\tau(1)=\frac{\Gamma_{1}}{v_{1}}=\max \left(\frac{\Gamma_{1}+\Gamma_{2}}{u b_{0}}, \frac{\Gamma_{1}}{u b_{1}}, \frac{\Gamma_{2}}{u b_{2}}\right) . \tag{S1}
\end{equation*}
$$

Strategy B: Switching between two MinModes Next we consider the case where the two minimal gene sets χ_{1}, χ_{2} are separately activated in two time intervals with flux vectors w^{1}, w^{2}. Here w^{1} is only producing the target metabolite P_{1} and w^{2} only P_{2}. Applying the steady-state condition, we get $w^{1}=\left(w_{0}^{1}, w_{0}^{1}, 0\right)^{\top}, w^{2}=\left(w_{0}^{2}, 0, w_{0}^{2}\right)^{\top}$. For w^{1}, we have the upper bounds

$$
u b_{0}^{1}:=A_{t o t} k c_{0} \frac{1}{\gamma_{A}+\gamma_{0}+\gamma_{1}}, \quad u b_{1}^{1}:=A_{t o t} k c_{1} \frac{1}{\gamma_{A}+\gamma_{0}+\gamma_{1}}, \quad u b_{2}^{1}=0
$$

whereas as for w^{2} we get

$$
u b_{0}^{2}:=A_{t o t} k c_{0} \frac{1}{\gamma_{A}+\gamma_{0}+\gamma_{2}}, \quad u b_{1}^{2}=0, \quad u b_{2}^{2}:=A_{t o t} k c_{2} \frac{1}{\gamma_{A}+\gamma_{0}+\gamma_{2}} .
$$

Maximizing w_{0}^{1} resp. w_{0}^{2} under the constraint $w^{1} \leq u b^{1}$ resp. $w^{2} \leq u b^{2}$ yields

$$
w^{1}=\min \left(u b_{0}^{1}, u b_{1}^{1}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \text { and } w^{2}=\min \left(u b_{0}^{2}, u b_{2}^{2}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

For the durations, we get

$$
\begin{equation*}
\tau_{1}=\frac{\Gamma_{1}}{\min \left(u b_{0}^{1}, u b_{1}^{1}\right)}=\max \left(\frac{\Gamma_{1}}{u b_{0}^{1}}, \frac{\Gamma_{1}}{u b_{1}^{1}}\right) \text { and } \tau_{2}=\frac{\Gamma_{2}}{\min \left(u b_{0}^{2}, u b_{2}^{2}\right)}=\max \left(\frac{\Gamma_{2}}{u b_{0}^{2}}, \frac{\Gamma_{2}}{u b_{2}^{2}}\right) \tag{S2}
\end{equation*}
$$

Whether or not the solution w^{1} and w^{2} outperforms the single flux vector v, i.e., whether or not $\tau_{1}+\tau_{2}<\tau(1)$ depends on the demand Γ and the upper bounds $u b, u b^{1}, u b^{2}$. We discuss two cases in more detail.

First suppose $u b_{0}$ is small, such that $\tau(1)=\left(\Gamma_{1}+\Gamma_{2}\right) / u b_{0}$ and $u b_{0}<u b_{1}^{1}, u b_{2}^{2}$. It follows $\tau_{1}<\Gamma_{1} / u b_{0}, \tau_{2}<\Gamma_{2} / u b_{0}$ and so $\tau_{1}+\tau_{2}<\tau(1)$. In other words, switching from w^{1} to w^{2} is more efficient than the single flux mode v.

Second, assume $u b_{0}$ is large, such that $\tau(1)=\Gamma_{1} / u b_{1} \geq \Gamma_{2} / u b_{2}$. Using Eqn. ??, we get $\left(\Gamma_{1}+\Gamma_{2}\right) / u b_{0} \leq \Gamma_{i} / u b_{i}$, which implies $\Gamma_{i} / u b_{0} \leq \Gamma_{i} / u b_{i}$, for $i=1$, 2. Since $u b_{0} \geq u b_{i} \Leftrightarrow u b_{0}^{i} \geq u b_{i}^{i}$ and using Eqn. ??, we get $\tau_{i}=\Gamma_{i} / u b_{i}^{i}$, for $i=1,2$. The switching solution thus has the duration $\tau_{1}+\tau_{2}=\Gamma_{1} / u b_{1}^{1}+\Gamma_{2} / u b_{2}^{2}$. As long as $\Gamma_{2} / u b_{2}^{2}$ is not too small, this will be larger than $\tau(1)=\Gamma_{1} / u b_{1}$, the duration of the single mode solution. Taking a closer look at the ratio Γ_{1} / Γ_{2}, we observe that a smaller value of Γ_{1} and a larger value of Γ_{2} in this situation are favorable for the the single mode solution. On the one hand, increasing Γ_{1} by a factor $c>1$ increases also $\tau(1)$ by c, whereas $\tau_{1}+\tau_{2}$ increases by a strictly smaller factor (as long as $\Gamma_{2}>0$). On the other hand, decreasing Γ_{2} has no effect on $\tau(1)$, while the duration of the switching solution is decreased. We conclude that the single mode solution performs best compared to the switching solution, i.e., $\tau(1) /\left(\tau_{1}+\tau_{2}\right)$ is minimal, if we have equality in our assumption, i.e., $\Gamma_{1} / u b_{1}=\Gamma_{2} / u b_{2}$, or equivalently $\Gamma_{1} / \Gamma_{2}=u b_{1} / u b_{2}$.

Strategies C or D Between the two extreme strategies A and B, there are the intermediate strategies C and D. Strategy A can be seen as the limit case of strategy C or D , when τ_{2} goes to zero. Strategy B is a limit case of C resp. D, when v_{1}^{2} resp v_{1}^{2} vanishes.

