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México. SUPPLEMENTARY MATERIAL

J.X. Velasco-Hernández M. Núñez-López
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The SEIRS model for diseases has a long history and has been amply
analyzed. Here we will limit ourselves to the determination of equilibrium
points and a local stability analysis and numerical simulations of relevant
characteristics. In this section we consider only the case where the contact
rates βj are constant. To ease the mathematical analysis we consider the
case where θ1 = θ2 and then illustrate the consequences of the inequality
numerically.

The phase space of our model is the subset of the non-negative cone

Ω = {(S,E1, I1, R1, E2, I2, R2) ∈ R7 : 0 ≤ S+E1+I1+R1+E2+I2+R2 ≤ 1}.

Applying the next-generation matrix methodology (Velasco-Hernández, 1994)
we obtain that the reproduction number for the system is

R0 = max{R01, R02},

where

R0j =
βjγj

(µ+ ηj)(µ+ γj)
j = 1, 2.

The disease-free equilibrium exists and it is given as P0 = (1, 0, 0, 0, 0, 0, 0).

The boundary equilibria (those equilibrium points where only one of the
diseases exist) can be computed from the equations. Here we only write the
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expressions for the infectious states I∗1 and I∗2 since they play a role in the
discussion that follows:

I∗1 =
(µ+ θ)2(µ+ η1)(R01 − 1)

β1(µ(θ + µ)(µ+ η1) + γ1(θ + µ+ η1))
,

I∗2 =
µ(µ+ θ)2(µ+ η2)(R02 − 1)

β2((µ+ γ2)(θ + µ)(µ+ η2)− γ2θη1)
.

Note that the denominator of I∗2 depends on η1. We will denote the equilib-
rium point where only virus j is present as Pj.

To determine the existence of an interior equilibrium point (where both
viruses are present in the system) we equate the right-hand side of our equa-
tions to zero and, after some algebraic manipulations, we can obtain expres-
sions for the coordinates of the equilibrium points. The existence, uniqueness
and positivity of any of the possible interior equilibria present difficulties due
to the number of parameters that the model has. However, we can explore
an special case and from it we will attempt a generalization.

Set σ = 1. This is interpreted as assuming that the secondary infection takes
place with contact rates identical to those recorded for infections of naive
hosts. After some algebraic manipulation we can see that I∗∗1 depends on the
reproduction numbers of both viruses whereas I∗∗2 depends only of a single
parameter of the other virus: η1. In other words, changes in the parameters
related to virus 1 have little, if any, effect on the density of I2 at equilibrium
whereas changes in the parameters for virus 2 can have a large effect on the
equilibrium value and even on the biological feasibility of I1.

To find the interior equilibrium point we reduce the original seven equa-
tions to a system of two bivariate functions

m1(I1, I2) = 0, m2(I1, I2) = 0

whose solutions give the coordinates (I∗∗1 , I
∗∗
2 ) of the interior equilibrium

point. Following backwards the process of simplification done to obtain the
rational functions m1 and m2 we can recover the rest of the coordinates. If
I∗∗1 and I∗∗2 are positive, so are the rest of the coordinates. For the special
case σ = 1 one can solve the system explicitly to obtain that

I∗∗1 = I∗∗1 (R01, R02), I∗∗2 = I∗∗2 (η1).
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Figure A: Existence of equilibrium points as a function of the repro-
duction numbers. Pj denotes boundary equilibria where only one virus
population exists; P12 denotes an interior equilibrium with both viral pop-
ulations existing. The stability properties of each point were computed nu-
merically using the values in Table 1 with influenza as virus 1 and RSV as
virus 2.

Using the expression for the boundary equilibrium for I∗2 , we can see that
its existence depends on two conditions: the first, the typical one, is that
R02 > 1, the second however is interesting, see Figure A.

Now we will explore numerically the consequences of assuming the more
realistic scenario of having two different durations of immunity. Using the
baseline value of θ = 0.0001 (see main text) we verified the effect that a
different value of θ1 has on the overall dynamics of the epidemics. In Figure
B a lower value of θ1 conserves the frequency of the oscillations (but not the
amplitude which is lower than before). Taking higher values of θ1 essentially
preserved the frequency and makes the amplitude more regular. In Figure
C we show the dynamics with a much smaller base line immunity value
for the superior competitor. Here the dynamics is very much different to
the observed in the previous case and in the data. Thus, the qualitative
dynamical behavior of the model does not change under the first scenario
described above which is the one of interest in this work.
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Figure B: Simulations for R̂ = R1/R2 for total cases (RSV plus in-
fluenza) and θ2 fixed. The red line is when θ1 = θ2, green line stands
θ2 > θ1 and blue line θ1 > θ2. For all cases θ2 = 0.0001.

Figure C: Simulations for R̂ = R1/R2 for total cases (RSV plus in-
fluenza) and θ1 fixed. The red line is when θ1 = θ2, green line stands
θ2 > θ1 and blue line stands θ1 > θ2. For all cases θ1 = 0.00005.
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Finally, to obtain the forcing function f(t) that multiplies the contact rate
βk we obtained the data for daily temperatures and adjusted a trigonometric
polynomial to it resulting in the function

f(t) = 17.33 + 0.480 sin

[
2π

365
t

]
− 0.40 sin

[
2π

365
2t

]
− 4.03 cos

[
2π

365
t

]
−1.05 cos

[
2π

365
2t

]
In supplement 1 we are estimating the reproduction number for each

outbreak assuming that the time scales of infection and recovery are signif-
icantly shorter than the time scale of the environmental fluctuation. This
assumption allows us to zoom in on each outbreak and treat it as an isolated
event where the demographic and epidemiological processes dominate over
the environmentally driven oscillations.
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