
   

Supporting Information S3. Data analysis 
Temporal trends, covariation and cross-correlations  
We plotted temporal trends of abundance and population growth rate with climate 
variables (Figure S3.1-3.4). To investigate possible cycles in abundance, population 
growth rate and climate, and any covariation in these variables we used 
autocorrelation (ACF), partial autocorrelation (PACF) and cross-correlation analyses. 
Autocorrelation is the cross correlation of a variable with itself at two points in time. 
Partial autocorrelation is the autocorrelation between two observations after removing 
any linear dependence between them due to other confounding variables. Cross 
correlation provides an estimate of the correlation between two times series at 
different time lags. If there were significant correlations, larger than the confidence 
intervals (dashed lines) with negative lag, x is said to leading y, by lag h.  
 
Although large fluctuations in abundance were observed across the 40-years, there 
was little evidence of significant long-term cycles in abundance. Auto- and partial 
autocorrelation analysis identified 1-year lag in abundance, i.e. abundance in any year 
was positively correlated to abundance in the previous year (Figure S38) In contrast, a 
7-year cycle in population growth rate was observed (Figure S8), population growth 
rate at time t0 was correlated with population growth rate t7 and t15.  
 
Abundance in any year (Ni) was positively correlated with abundance in the previous 
year (Ni-1) (Linear regression: (Ni-1) (r2= 0.27, F1,38 = 16.11, p < 0.001, y = 
16.6+0.53x). Such serial correlation is a common pattern in many taxa [1]. To account 
for this serial autocorrelation in the data we included an autoregressive term to all 
climate models (AR1*Ni-1). The AR term, estimated by fitting an autoregressive 
model was 0.57, and this term preceded the climate variables of interest (x1, x2,… xn) 
as so;  
Ni = 0.57*Ni-1 + x1..n.  
 
Modelling Procedure 
To investigate how climate relates to lizard abundance on BCI we used the 
information theoretic (IT) model selection approach based on Akiake’s Information 
Criterion (AIC) as outlined in Burnham and Anderson (2002). The IT model selection 
approach is a useful way to identify the most likely model(s) given the data [2,3] and 
has several advantages over other step-wise procedures, which have been outlined in 
detail elsewhere [e.g. 3,4].  Most importantly, it provides an estimate of the weight of 
evidence in favour of a model being the best model, out of the set of candidate models 
considered [5]. This model weight can be simply interpreted as the probability that a 
given model, within a set, is the best approximating model. This approach does not 
simply compare one model against a null hypothesis (like traditional hypothesis 
testing), but compares amongst competing models.  The Akiake weights also have the 
added advantage of providing evidence of model selection uncertainty, which is often 
ignored when attempting to choose a single best model. An akiake weight close to 1 is 
good evidence of a single best model, however if models are poor, then the best 
model weights will be low and several models can share similarly low probabilities; 
suggesting model selection uncertainty.  
 
The information theoretic approach is not without pitfalls and a common problem is 
overfitting (i.e. considering too many models or explanatory variables) [6]. 



   

Considering too many models can lead to an AIC-best model that includes a variable 
only spuriously related to the data. This problem was confirmed in a recent study 
testing for the effect of weather on population abundance using 492 population 
abundance time series from the Global Population Dynamics Database (GPDD) [7]. 
Knape and de Valpine [7] suggest that for studies of specific populations a priori 
hypotheses about which factors are important can reduce the number of variables 
included in the analysis and minimise problems of overfitting. We adopted this 
approach when choosing a candidate set of models. 
 
Creating a candidate set of models 
We included all climate variables previously associated with changes in abundance, 
climate variables that have changed over the last 40 years, and the global climate 
variable Southern Oscillation Index (SOI) in the previous year.  To test the hypothesis 
that climate change places thermoregulatory constraints on shade-adapted rainforest 
lizards [8], we also included the number of days that the maximum temperature 
exceeds A. apletophallus’ preferred body temperature (PBT) of 27.8ºC [9], dry season 
maximum temperature, and wet season maximum temperature as explanatory 
variables.  In total this approach yielded 14 variables, some of which were highly 
correlated. To avoid problems of mutli-colinearity, we removed one variable from 
each of the three highly correlated pairs of variables (r>0.80, Figure S7). We retained 
11 climate variables for analysis (Table 1). A normally distributed dummy variable 
that was uncorrelated with the response was also included as an explanatory variable 
in the analysis to determine if the model selection procedure was likely to include 
spurious variables within our confidence set. We also included a model with no 
climatic variables in the candidate set (i.e. intercept only or Autoregressive term (AR) 
only) to compare the residual variance (σ2) between models with and without the 
addition of a climate variable. Prior to analysis all the variables were checked for 
normality and transformed, where necessary, using the Box Cox Power 
transformations. All explanatory variables were centred and standardised by 
subtracting the mean and dividing by the standard deviation. To minimize problems 
associated with overfitting only one climatic variable was included in each model. For 
the response variable log abundance a total of 14 models were fitted (11 climate 
variables, 1 dummy variable, 1 AR model, 1 intercept model). 
To model how climate affects each cohort we considered the weather conditions 
pertinent to that cohort, i.e. for the log number of juveniles we calculated climate 
variables for September-December, for log number of young, July-December, and for 
log number of adults, May-December. In some cases it was not appropriate to subset 
the climate variable because the variable was already a subset, e.g. wet season 
rainfall, wet/dry season maximum temperature or because only an annual estimate 
was available (SOI). As a result only 6 of the 11 variables were included in this 
analysis of the separate cohorts (see Table 1), resulting in a total of 8 models tested (6 
climate variables, 1 dummy variable, 1 intercept model).  
 
IT model selection procedure 
For analysis AIC was corrected for small sample size (also called the second-order 
criterion AICc), this is necessary when the ratio of the number of observations (n) to 
the number of parameters (K) is small (< 40)[5]. The corrected AIC was calculated 
using the following equation:  
AICc = AIC + ((2*K(K+1))/n-K-1) 



   

For simplicity we use AIC to denote AICc for the remainder of the paper. Model AIC 
was calculated and compared between the candidate models, the model with the 
lowest AIC (AICmin) was considered the best fitting model and the relative change in 
AIC (ΔI) between models was calculated using:  
ΔI = AICi - AICmin 

To compare between R set of models the Akaike Weights (ωi) were calculated as 
follows: 

  
This entire model set can then be reduced to a confidence set using an evidence ratio 
cut off of 1/8, thus models with evidence ratios greater than 0.13 are included [5]. The 
evidence ratio of the model j is calculated using the following equation.  
ER  = exp(-1/2 ΔI) 
The Akiake weights are then recalculated for the confidence set and as such they sum 
to one. The direction and magnitude of the explanatory variable’s effect on the 
response term is based on the parameter estimate and its 95% Confidence Interval 
(CI). All analyses were carried out using the statistical package R [10]. 
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