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Appendix S1 Properties of the investor demand function10

Here, we formalize and prove properties of the investors’ demand function that were mentioned in the11

text. Lemma S1 shows that the investor demand is single-valued, under the following mild assumptions12

on the investors’ utility function and on the random variable representing beliefs about the bonds’ value.13

Next, Lemma S2 achieves stronger results for the particular utility function with constant relative risk14

aversion (CRRA).15

Lemma S1–S2 make the following assumptions. (All four assumptions except for Assumption S2 and16

the second part of Assumption S3 were mentioned in the main text.)17

Assumption S1. The investors’ utility function u : (0,∞)→ R is strictly increasing and strictly concave.18

19

Assumption S2. The investors’ utility function u(·) is twice continuously differentiable.20

Assumption S3. Vt+1 is an absolutely continuous random variable, and its density function ft+1 is a21

continuous function on [0, 1].22

Assumption S4. The investors have some bonds (zt > 0), some deposits (yt > 0), and some currency23

(ct > 0).24

Some elementary results in convex optimization imply that the investors’ demand is single-valued and25

that they want to sell all their bonds if and only if the price equals or exceeds the expected value of26

bonds.27
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Lemma S1 (Investor demand is single-valued and equals −zt iff price π ≥ EVt+1). Under Assump-28

tions S1–S4, the investor demand function is single-valued. Furthermore, Di(π) = −zt if and only if29

π ≥ EVt+1.30

Proof. Let zt, yt, ct > 0 (by Assumption S4), and let the currency fraction µ ∈ [0, 1) and the hypothetical

price π ∈ (0, 1). Recall that the investors’ demand, Eq. (1) of the main text, is defined to be

Di(π; ct, yt, zt) := arg max
−zt≤ d≤ yt/[π(1−µ)]

E (u [Vt+1(zt + d) + yt + ct − πd]) . (S1)

For convenience, let g(d; zt, yt, ct, π) denote the objective function of Di(π), i.e.,

g(d; zt, yt, ct, π) := E (u [Vt+1(zt + d) + yt + ct − πd])

=

∫ 1

0

u [v(zt + d) + yt + ct − πd] ft+1(v)dv,

The domain of g is the interval [−zt, yt/(π(1− µ))], which is convex.31

The continuity of u and u′ (by Assumption S2) and of ft+1 (by Assumption S3) enable us to use the

Leibniz integration rule twice to move the derivative inside the integral sign to compute the first two

derivatives

∂g

∂d
=

∫ 1

0

u′ [v(zt + d) + yt + ct − πd] (v − π)ft+1(v)dv, (S2a)

∂2g

∂d2
=

∫ 1

0

u′′ [v(zt + d) + yt + ct − πd] (v − π)2ft+1(v)dv. (S2b)

Because u is strictly concave (by Assumption S1) and twice differentiable (by Assumption S2), and

because its domain (0,∞) is convex, we know that u′′ < 0 [1, Sec. 3.1.4, page 71]. Also, we know that

(v − π)2 ≥ 0 with equality if and only if v = π. Combining these two conclusions with Eq. (S2b) gives

∂2g

∂d2
< 0 for all d ∈

[
−zt,

yt
π(1− µ)

]
. (S3)

Because ∂2g/∂d2 < 0 and because the domain of g is convex, we know that g(d) is strictly concave [1, Sec.

3.1.3, page 69]. Thus, any solution d∗ to the first-order (necessary) condition for the maximization in
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Eq. (S1),

∂g

∂d
(d∗; zt, yt, ct, π) = 0, (S4)

is a unique, global maximum [1, Sec. 3.1.3, page 69]. If no solution d∗ to Eq. (S4) exists, then ∂g/∂d is32

either positive for all d, in which case g(d) has a unique maximum at −zt, or ∂g/∂d is negative for all d,33

in which case g(d) has a unique maximum at yt/[π(1− µ)]. Thus, the investor demand function (S1) is34

single-valued.35

Furthermore, the first derivative of the objective function evaluated at the lower constraint d = −zt

is

∂g

∂d
(−zt; zt, yt, ct, π) = (EVt+1 − π)u′(yt + ct + πzt).

Because u′ > 0 (by Assumptions S1–S2), we know that

∂g

∂d
(−zt; zt, yt, ct, π) ≤ 0 if and only if π ≥ EVt+1 (S5)

Equations (S5) and (S3) imply that Di(π) = −zt if and only if π ≥ EVt+1, which completes the proof.36

The next lemma achieves stronger results for the particular utility function u(·) that exhibits constant37

relative risk aversion. Specifically, the lemma establishes the price at which the investors first begin to38

buy less than the maximum that they can afford.39

Lemma S2 (Investor demand less than they can afford iff π > π̃t+1). Suppose that the investors have40

CRRA utility with parameter λ and that the belief follows a Beta distribution with parameters αt, βt. Then41

under Assumptions S1–S4, we know that π ≤ π̃t+1 implies Di(π) = yt/[π(1−µ)], and π̃t+1 < π ≤ EVt+142

implies −zt ≤ Di(π) < yt/[π(1− µ)].43

Proof. We will show that the first derivative with respect to d of the objective function g(d; zt, yt, ct, π)44

of the maximization in Di(π) evaluated at the upper constraint d = yt/[π(1−µ)] is negative for π < π̃t+145

and positive for π > π̃t+1. By Lemma S1, we know that ∂2g(d; zt, yt, ct, π)/∂d2 < 0 for all −zt ≤ d ≤46

yt/[π(1− µ)]. Because of this negative second derivative, we know that47

• ∂g/∂d ≤ 0 at d = yt/[π(1− µ)] implies Di(π) = yt/[π(1− µ)], and that48
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• ∂g/∂d > 0 at d = yt/[π(1− µ)] implies Di(π) < yt/[π(1− µ)],49

which proves the claim.50

Using u′(w) = w−λ in Eq. (S2a) and evaluating at d = yt/[π(1− µ)] gives

∂

∂d
g(d; zt, yt, ct, π)

∣∣∣∣
d=yt/[π(1−µ)]

=

∫ 1

0

u′
[
v

(
zt +

yt
π(1− µ)

)]
(v − π)ft+1(v)dv

=

[
zt +

yt
π(1− µ)

]−λ ∫ 1

0

(
v1−λ − πv−λ

)
ft+1(v)dv

=

[
zt +

yt
π(1− µ)

]−λ (
E
[
(Vt+1)1−λ

]
− πE

[
(Vt+1)−λ

])
,

which is positive if and only if

π > π̃t+1 ≡
E
[
(Vt+1)1−λ

]
E [(Vt+1)−λ]

=
αt+1 − λ

αt+1 + βt+1 − λ

because zt + yt/[π(1− µ)] > 0 by Assumption S4. This equivalence proves the claim.51

Appendix S2 Derivation of the bank demand function52

Here we derive the bank demand function for positive shocks [Eq. (7a)] and for negative shocks [Eq. (7b)]

from the original definition [Eq. (4)]. By rearranging the insolvency constraint, Eq. (5), we find that the

three constraints (3) are equivalent to

−xt ≤ d ≤ min

{
vt+1xt + rt − yt

π − vt+1
,
rt
µπ

}
if π ≥ vt+1; (S6a)

max

{
−xt,

vt+1xt + rt − yt
π − vt+1

}
≤ d ≤ rt

µπ
if π < vt+1. (S6b)

53

To evaluate the arg max in Eq. (4), note that the marginal change in the banks’ expected equity due

to a infinitesimal increase in demand d is

∂

∂d
E et+1 =

∂

∂d
E [Vt+1(xt + d) + rt − (yt + πd)] = EVt+1 − π.

Thus, the expected equity E et+1 is linear in d with slope EVt+1 − π, subject to the constraint (S6).
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The sign of EVt+1 − π therefore determines whether the bank demand is the lower or upper constraint

in (S6), and the sign of π − vt+1 determines whether to use constraint (S6a) or (S6b). Note that if

EVt+1 < π < vt+1, then the banks’ demand is the lower constraint in (S6b), which simplifies to −xt

under the assumption that πxt + rt − yt ≥ 0. In summary, the banks’ demand function can be written

more explicitly as Db(π) = −xt if πxt + rt − yt < 0 or if π > EVt+1, and otherwise

Db(π) =


rt
µπ

if π < vt+1

min

{
vt+1xt + rt − yt

π − vt+1
,
rt
µπ

}
else

. (S7)

Finally, considering whether the banks comply with their insolvency constraint (5) immediately after the54

shock leads to Eq. (7).55

Appendix S3 Effect of a capital requirement on the region of56

beliefs giving rise to three equilibria57

Here we explain why, after implementing a capital requirement, the region of beliefs giving rise to three58

equilibria is reduced from above (and not from below), as illustrated in Fig. 10. Recall that the banks59

are insolvent if and only if the bond price π ≤ (yt − rt)/xt. Also recall [from the banks’ demand in the60

event of a negative shock, illustrated in Fig. 2(B)] that below the price (yt − rt)/xt the banks are forced61

to sell all their bonds; by contrast, above the price (yt − rt)/xt and below EVt+1, the banks’ demand62

increases with the price. That is, the kink in the bank demand occurs at the price (yt − rt)/xt.63

Implementing a capital requirement does not affect the location of this kink because the capital64

constraint Ccap. req.(π) [defined in Eq. (10)] satisfies Ccap. req.[(yt − rt)/xt] = −xt. If deposits yt exceed65

reserves rt (as typically occurs in practice), then Ccap. req.(π) is increasing in the price π for π ≥ (yt −66

rt)/xt, so a kink still occurs at the price (yt − rt)/xt. On the other hand, if reserves rt exceed deposits67

yt (which rarely occurs in practice), then Ccap. req.(π) > 0 for all prices π, so the capital requirement68

does not bind for any price because the bank’s demand is negative for a negative shock, and so the69

bank demand still has a kink at the price (yt − rt)/xt. In summary, the position of the first saddle-node70

bifurcation (at which two new equilibrium prices appear) is (yt−rt)/xt for any minimum capital-to-assets71

ratio γmin
t+1 ; that is, the lower boundary of the region of three equilibria [such as in Fig. 4(E) and in Fig. 10]72
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is independent of the capital requirement.73

Although a capital requirement does not move the location of the kink in the bank demand, a capital74

requirement can bind (and hence reduce the banks’ demand) for prices just above that price where the75

kink occurs, (yt − rt)/xt, as illustrated in Fig. 9(A). Consequently, the left-hand side of the “hump” in76

the total demand function [depicted in Fig. 4(A)–(C)] is truncated; for an illustration, see Fig. 9(A).77

Thus, a less severe negative shock causes the two larger equilibrium prices to disappear, as illustrated in78

Fig. 9(B). In summary, the reduction in the banks’ demand just above the price (yt−rt)/xt explains why79

the region of three equilibria is truncated from above in Fig. 10 and hence why the capital requirement80

can force a decline in the bond price and bank insolvency.81
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