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Abstract

Occupation of native ecosystems by invasive plant species alters their structure and/or function. In Hawaii, a subset of
introduced plants is regarded as extremely harmful due to competitive ability, ecosystem modification, and biogeochemical
habitat degradation. By controlling this subset of highly invasive ecosystem modifiers, conservation managers could
significantly reduce native ecosystem degradation. To assess the invasibility of vulnerable native ecosystems, we selected a
proxy subset of these invasive plants and developed robust ensemble species distribution models to define their respective
potential distributions. The combinations of all species models using both binary and continuous habitat suitability
projections resulted in estimates of species richness and diversity that were subsequently used to define an invasibility
metric. The invasibility metric was defined from species distribution models with ,0.7 niche overlap (Warrens I) and
relatively discriminative distributions (Area Under the Curve .0.8; True Skill Statistic .0.75) as evaluated per species.
Invasibility was further projected onto a 2100 Hawaii regional climate change scenario to assess the change in potential
habitat degradation. The distribution defined by the invasibility metric delineates areas of known and potential invasibility
under current climate conditions and, when projected into the future, estimates potential reductions in native ecosystem
extent due to climate-driven invasive incursion. We have provided the code used to develop these metrics to facilitate their
wider use (Code S1). This work will help determine the vulnerability of native-dominated ecosystems to the combined
threats of climate change and invasive species, and thus help prioritize ecosystem and species management actions.
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Introduction

Occupation of native ecosystems by ecosystem-modifying

invasive plants (EMIP) has been linked to changes in native

biodiversity [1,2], biogeochemical heterogeneity [3–5] and eco-

system services [2]. These invaders alter the structure and/or

function of the native ecosystems through both habitat degrada-

tion, and the development of non-analog communities/ecosystems

[6–8]. As detailed in Vitousek et al. [8] and Hughes et al. [9],

EMIPs both singly and collectively, have the potential to overrun

and fragment habitat previously characterized by unique and

diverse endemic communities. Although some ecosystems are

resilient[10,11], continuous degradation of habitat without reme-

diation may alter these diverse native communities to a point

beyond recovery.

Long-term climate change impacts may influence native

ecosystem resilience as well as shift the distribution of EMIPs

[12–15]. For instance, Willis et al. [12] demonstrated a dramatic

difference in the response of invasive species to climate change,

where invasive species were found to be far better at tracking

seasonal temperature changes than native and non-native non-

invasive species. In the absence of management, habitat degrada-

tion by EMIPs under climate change may occur through an

increase in invasive species spread, which may increase EMIP

diversity (due to a redistribution of ecosystem dominance brought

about by climate change [16]), and/or an increase in EMIP

density. Increases in EMIP diversity and density add pressures to

native ecosystems [13,16], which in combination with a reduction

in ecosystem resilience may lead to an expansion of degraded

habitat and increasingly diminish endemic diversity [16–18].

Although there are biome- and scale-based differences in the

resistance of native ecosystems to invasion [18–20], the overall

trend of native contraction following EMIP incursion is consistent

[21,22]. Therefore, understanding the realized and potential

distribution of these EMIPs, especially in relation to climate

change, is an important step in defining native ecosystem

susceptibility and managing EMIP impact.

The term invasibility is commonly used to describe the

susceptibility of native ecosystems to colonization and thus

modification [23,24]. Metrics defining invasibility risk reflect

habitat suitability in both invaded and unoccupied habitat. In

order to understand consistent and continuous ecosystem degra-

dation by these EMIPs under climate change a landscape level
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analysis is necessary. One such landscape based approach, species

distribution modeling (SDM), has been used extensively to

understand both single and multi-species (i.e. richness/diversity)

distributions in both natural and invaded landscapes [25–27]. The

multitude of SDM methodologies all have the ability (with varying

accuracy) to both define and predict the theorized realized niche of

an organism (based on biotic and abiotic variables), and project

that habitat onto specific climate change scenarios [26,28,29]. By

combining these niche estimates for multiple species, conserva-

tionists and ecologists can predict and project hotspots of native

and non-native species richness and diversity [27,28,30,31]. These

types of landscape-based predictive analyses offer a powerful tool

to predict actual and potential habitat degradation in relation to

non-native species invasion. Delineating non-native hotspots

allows ecosystem managers to understand the distribution of

currently invaded habitat, as well as recognize the invasive

organisms’ potential distribution (i.e. invasibility) [30,32,33].

Recognizing the invader’s current and potential distributions will

enable ecosystem mangers and regulators to prioritize resources

and identify native dominated habitat with a high likelihood of

EMIP incursion [30,31].

Hawaii, an isolated archipelago extolled for the biodiversity of

its endemic flora and fauna, also has the highest number of

endangered species in the United States [34]. Of the 919 plants

federally listed as threatened or endangered in the United States,

approximately 400 (,43%) of them occur in Hawaii [35]. Many

of the habitats these plants once flourished in are now dominated

by highly invasive EMIPs [6,34], which dramatically alter

community structure and ecosystem processes [36–38]. It has

been estimated that of the ,8–10,000 plant taxa introduced to the

Hawaiian islands only ,90 are regarded as extremely harmful due

to competitive ability, ecosystem modification, and/or biogeo-

chemical habitat degradation [39]. Given that non-native/invasive

species that have become naturalized make up ,K of all species

in Hawaii [40], the small number of highly invasive EMIPs is

somewhat surprising, and potentially encouraging, as controlling

this small group of highly invasive ecosystem modifiers could

significantly reduce native ecosystem degradation.

For this study, we compiled data for the top 17 Hawaii-based

EMIPs, characterized their distributions and developed a novel

metric attempting to describe overall invasibility within Hawaii.

The distribution of each invasive plant species was modeled using

an ensemble of SDM methodologies to project the distribution of

actual and potential degraded habitat, and assess whether modeled

EMIP richness and diversity can be used as a proxy of invasibility.

We then estimated the current (2013) and future (,2100)

distribution of invasibility (and its change over time) throughout

Hawaii, and in relation to federally designated critical habitat for

endemic Hawaiian organisms listed as threatened or endangered.

By characterizing invasibility over a geographic landscape, a

discriminative distribution of invasive species diversity and hot-

spots [30] was developed which can be used to explore island

biogeographic relationships, and pro-actively manage current and

future invasive incursion.

Materials and Methods

A. Invasive Species Occurrence Data
A set of 17 EMIPs were selected for this analysis based on high

risk assessment scores estimated by Dahler et al. [19], Pheloung et

al. [41] (Table 1), expert opinion of risk to native ecosystems and

data availability. The distributions of these invasive plants

encompass a broad range of regional characteristics as determined

by a Hawaii specific moisture index [42] overlaid with collection

localities and verified by Wagner et al. [43] (Table 1). A six letter

acronym, using the first three letters of both the genus and species

names, is used henceforth to code species names (Table 1).

A total of 114,782 location records for all EMIPs were collected

across the main Hawaiian islands (Kauai, Oahu Molokai, Maui,

Lanai, Hawaii) by the Kauai, Oahu, Maui, and Hawaii Island

Invasive Species Councils, the United States National Park Service

and the U. S. Geological Survey (see Fig. 1). The data included

location information from both managed (complete or partial

removal of the invasive plant) and unmanaged sites. All location

records were used to define and project the SDMs because treated

and untreated sites were both occupied by the species. The

number of occurrences collected per species (Table 1) varied

greatly because collections were dependent on the management

priorities of the respective collecting organizations, thus, density or

number of collections are not necessarily a correlate of invasive

risk or degree of establishment.

When using an SDM approach it is assumed that the species is

in equilibrium with environmental covariates used to derive that

distribution over the defined landscape [44]. Violating this

equilibrium assumption produces a model that is constrained by

the location of occurrences at the time of collection. Although

many SDM methodologies are relatively robust to violations of

environmental equilibrium, using data limited to the onset of

invasion may skew the model prediction to a small subset of an

invasive organism’s suitable habitat (increasing commission error).

Some studies have attempted to circumvent non-equilibrium by

using both natal and invaded habitat for invaded habitat

projections [33,45], however this may also underestimate the

potential range of the species within the novel habitat due to

probable niche expansion [44,46–48]. In an attempt to address

violations of equilibrium due to recent invasions, Vaclavik et al.

[44] suggested that invasive habitat suitability projections should

be conducted as the species tends closer to equilibrium. To address

these concerns establishment dates for all species selected were

reviewed to assess environmental equilibrium of the EMIPs in

Hawaii (Table 1). Of all the species selected, the most extensively

collected (and distributed) was also the most recently established

(e.g. MicCal). Even while accounting for the more recent invasion

of MicCal, the 17 invasive species selected for this study had an

average establishment time of 104 years (SD 6 40 years). We feel

that the selected species have had sufficient time to establish since

introduction and are at or near equilibrium with the current

environment.

B. Environmental Indices
A total of 24 continuous abiotic environmental indices,

including 19 bioclimatic and 5 topographic variables, were initially

considered for modeling (Fig. 2). These indices were defined for six

of the main eight Hawaiian islands (Kauai, Oahu, Molokai, Maui,

Lanai, and Hawaii.). All current bioclimatic variables were defined

from 250 meter(m) monthly average rainfall estimates developed

by Giambelluca et al. [49] and 500 m scaled average monthly

minimum and maximum temperature maps from the PRISM

Climate Group [50,51]. As with all other analyses and modeling

presented, we calculated bioclimatic variables using the R

statistical environment [52]. The R package ‘dismo’ provided

methods for bioclimatic variable generation based on rainfall and

temperature data [53].

Topographic variables were derived from a 30 m Digital

Elevation Model as upscaled from the 10 m National Elevation

Dataset (NED) [54]. These topographic variables were calculated

using the R statistical environment package ‘raster’ [55]. All

topographic variables were assumed to be biologically significant

Modeling Invasibility in Hawaii
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to all plant species modeled [56–58] (see Fig. 2 for topographic

and bioclimatic variable definitions).

Correlations between all pairs of topographic and bioclimatic

variables were estimated for the complete extent of the Hawaiian

Islands at 250 m resolution using a Pearson correlation coefficient

(Fig. 2). These correlations were analyzed in ‘raster’ and plotted

using ‘corrplot’, a graphical correlation matrix plotting package in

R [59]. Multi-colinearity [57] was minimized by selecting five

bioclimatic and two topographic variables with low correlation

coefficients (,0.63) that were biologically relevant for SDM

analyses (Table 2). These contemporary projections were used to

define the current (baseline) distribution of each organism as

modeled from the compiled locality data (Fig. 1).

We derived future climate projections by adding the projected

change between 1990–2010 and 2080–2100 climate simulations to

the baseline (non-modeled) climate data dynamic downscaled

climate projections developed from the Hawaiian regional climate

model (3 km2 spatial resolution) by the International Pacific

Research Center [60]. The Hawaii regional climate model is

based on the Weather Research and Forecasting model V3.3 and

uses the Special Report: Emissions Scenarios A1B scenario

[61]and the mean of multiple Coupled Model Inter-comparison

Project 3 (commonly referred to as CMIP3) global circulation

models to project future climate that best represent regional

climate features such as the trade wind inversion.

C. Models
a. SDM Input and Settings. Three presence-only machine

learning SDM methodologies were used to model the distribution

of occurrence localities over geographic space, as defined by the

seven abiotic covariates described above. The three methodologies

MAXENT [62], Random Forest (RF) [63] and Gradient Boosting

Model (GBM) [64] were selected based on their published

predictive accuracy [65–68]. MAXENT is a popular SDM tool

that uses the maximum entropy approach to model species

distributions by comparing the projected distribution of occur-

rence localities, as projected over the environmental covariates, to

a null distribution (as defined by pseudo-absences) of the covariates

[69]. Random Forest is a tree learning methodology modified

from the bootstrap aggregation approach that builds a consensus

tree from the average of a large number of de-correlated

classification trees [68]. A GBM is a powerful classification tree

learning methodology that attempts to improve the predictive

accuracy of decision trees through boosting. The GBM approach

produces a predictive classification model built from an ensemble

of weaker models using an additive expansion approach that

builds successive classification trees in an a priori manner [68,70].

Figure 1. Collection locations for the 17 invasive species analyzed.
doi:10.1371/journal.pone.0095427.g001
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All analyses were run in R using the ‘biomod2’ package [71].

Biomod2 is a species distribution modeling platform developed for

single and multi-species SDM in which multi-model ensemble

modeling, calibration, forecasting and statistical analyses can be

conducted iteratively.

All analyses were projected over six of the main Hawaiian

islands (Fig. 1). Initial input data consisted of presence data per

species, pseudo-absence data, and the abiotic climatic and

topographic variables. Since presence-only species distribution

modeling relies on a Boolean definition of presence rather than

density, all overlapping presence points within a pre-specified grid

cell, as defined by the abiotic variable raster files (i.e.

250 m6250 m), were removed such that only a single presence

point per grid cell was used.

Invasive species data collection by most (if not all) of the listed

organizations mainly occur in areas of high conservation value.

Given that all species modeled are of concern to each organiza-

tion, overlapping collections of species occurred often. Using this

inherent collection bias, in concert with the overlapping collection

(or not) of multiple species, we selected pseudo-absences that

would help remove the spatially auto-correlated collection bias

towards high value conservation areas using the methodology of

Phillips et al. [72]. Because occurrence data for every species

modeled was collected in a relatively similar way and/or area by

Figure 2. Pearson correlation coefficient matrix comparing paired environmental covariates. Negative correlations are shaded red;
positive correlations are shaded green. Strength of the correlation is indicated by dot size and red or green color saturation. High correlation between
covariates is also indicated by the size of the colored oval delineating each comparison. The definition of each covariate (y-axis) and its coded
counterpart (upper x-axis) are defined per comparison.
doi:10.1371/journal.pone.0095427.g002

Table 2. The seven bioclimatic and topographic variables used for each species distribution model.

1Code Covariate Definition 2Representative Publications

Bio1 Average Annual Temperature [15,26,123,124]

Bio2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) [15,26]

Bio4 Temperature Seasonality (standard deviation *100) [15,26,123]

Bio12 Mean Monthly Annual Precipitation [15,123–125]

Bio15 Precipitation Seasonality (Coefficient of Variation) [15,123–125]

TRI Topographic Roughness Index [50,126,127]

TRASP Topographic Radiation Index [56,128]

1The variable code used in the text.
2Publications representative of the significance of the variables to plant distributions.
doi:10.1371/journal.pone.0095427.t002
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each organization, the presences of all other species (while

excluding the species being modeled) was used to define the

pseudo-absence data, and thus define the collection background.

This approach may help account for collection distributions not at

equilibrium with the actual species distribution [73], although

presence-only methodologies are relatively robust to violations of

equilibrium especially for relatively well established invasive

species [44,74]. As in the presence data, only a single point per

grid cell was used to define the collection background (e.g. pseudo-

absence defined background).

Many of the default settings, as specified for the specific

modeling methodologies, were used and defined directly in

‘biomod2’. Initial modeling options were set such that the GBM

and RF analyses used 100 trees with 5 cross validation folds,

whereas the maximum number of iterations in MAXENT was set

to 100. For each modeled species, we further specified 500 Markov

Chain randomization evaluation runs for each modeling method-

ology, and used a 20/80 (test/train) data split such that 20% of the

presence data was used for model evaluation and 80% was used to

calibrate each model. A sensitivity equals specificity threshold, as

recommended by Liu et al. [75], was used to infer locations of likely

presence/absence for all binary model projections because these

model projections were used to calculate estimates of EMIP

diversity.

b. Ensemble Model. All three SDM modeling approaches

were then combined using an ensemble model (EM) to assess

model congruence, and improve model accuracy. All EMs were

developed in ‘biomod2’ [71]. An evaluation metric quality

threshold of 0.5 was used to define the minimum scores of each

models Receiver Operating Characteristic/Area Under the Curve

(AUC) value (see Model Validation Statistics). Values above 0.5 were

used in the final ensemble. An AUC evaluation metric of 0.5

corresponds to a discriminatory power no better than random

[71]. Because multiple uncertainty measures were used to help

infer model utility and accuracy, we felt that this threshold was

sufficient to develop an accurate EM.

For each individual species ensemble we report two ensemble

modeling outputs; the weighted mean probability of occurrence

and committee averaging. The weighted mean probability of

occurrence is similar to a standard model mean in that they both

define the mean prediction of all models developed for the analysis

above the quality threshold evaluation metric. However, the

weighted mean probability of occurrence metric weights each

model according to the evaluation metric (the higher the metric

the greater the weight given to the model). The committee

averaging EM is both a predictive distribution model and a

measure of uncertainty. It uses the thresholded binary prediction

across all models to predict presence (1) or absence (0). Locations

with numbers between 0 and 1 show a ratio of uncertainty in

defining the EM presence/absence.

c. Model Validation Statistics and Variable

Importance. Each model was also evaluated using two

commonly used SDM validation indices; the AUC, and the True

Skill Statistic (TSS). The AUC validation statistic is a commonly

used threshold independent accuracy index that ranges from 0 to 1

(1 = highly accurate prediction). The AUC index defines the

probability that an SDM will rank a presence locality higher than

an absence (here a pseudo-absence) [76]. The TSS statistic ranges

from 21 to +1 and tests the agreement between the expected and

observed distribution, and whether that outcome would be

predicted under chance alone [76,77]. A TSS value of +1 is

considered perfect agreement between the observed and expected

distributions, whereas a value ,0 defines a model which has a

predictive performance no better than random [76,77]. The TSS

statistic is very closely related to Cohens Kappa statistic (KAPPA),

in that it also ranges from 21 to +1 and defines accuracy in

comparison to chance, but unlike KAPPA, TSS is not affected by

prevalence [77]. As recommended by Franklin et al. [78] and Elith

et al. [79] multiple test statistics were used to allow a more robust

assessment of model performance and validate model responses.

To understand a variable’s relative importance to each model,

species specific response plots and variable importance boxplots

were developed per SDM in ‘biomod2’ using the methodologies of

Elith et al. [80]. Response plots were developed for each variable

that define the sensitivity of the prediction to variation in a single

covariate while all other covariates were held constant. Using these

plots allow inference into the models’ ecological sensibility and

significance of each variable to the organisms distribution [80].

d. Niche Overlap. We used the niche overlap metric, I, [81]

to calculate pairwise niche overlap between the developed models.

We selected the I statistic as an appropriate overlap metric because

it makes no biological assumptions regarding habitat use and thus

is more appropriate for presence-only SDM analyses [81]. The I

statistic sums pair-wise differences between two SDMs to quantify

niche overlap on a 0 to 1 scale, where 0 indicates no niche overlap

and 1 indicates complete overlap. Niche overlap was further

analyzed using an Equivalency Test [81] to assess whether EMIP

SDM overlap is significantly different from that of a model

developed from a random subset of both sets of occurrence

localities. The test is used to assess significance of I by comparing

the I similarity metric to a one-tailed normalized null distribution

as defined by a random subset of compiled species locality

information [81,82]. As recommended by Warren et al. [81], the

equivalency test was replicated 100 times.

e. Projected Diversity Indices. To identify sites with

ecosystems suitable for many exotic species a compilation of 17

EMs (one per species) was used. This suite of EMs was used as an

‘‘invasibility index’’ (i.e. invasibility) because it highlights areas of

both actual and potential habitat degradation due to invasive

species habitat suitability.

To define invasibility we first rescaled all individual SDM EMs

on a scale of 0 (lowest habitat suitability) to 1 (highest habitat

suitability) using an approach similar to that of Mateo et al. [83].

The methodology was used for both current and future SDMs,

and is an estimate of potential species richness (alpha diversity)

[83]. Because these species richness measures are threshold

independent (i.e. they don’t necessarily account for the probability

of actual presence) they may overestimate richness and thus

potential invasibility/degradation in certain areas [28,83]. We

attempted to account for this by adapting the Shannon’s Diversity

Index (H) to an SDM approach to derive a threshold dependent

estimate of diversity, as well as assess important information

regarding species rarity/commonness [84]. Pineda et al. [28] used

a similar threshold dependent approach to project species richness,

but because they used a set of arbitrarily fixed thresholds to define

presence, this likely increased omission and commission errors

[29,75]. Since this approach uses a data driven threshold (i.e.

equal sensitivity and specificity), it reduces the omission/commis-

sion errors associated with such methodologies [28,75]. The two

major assumptions inherent to the application of H (and projected

species richness) to an SDM approach are that habitat suitability is

correlated with abundance, and that the thresholded Boolean

presence/absence maps accurately define, and project, species

presence.

To develop this threshold-dependent measure (i.e. H) we first

needed to estimate the abundance of each organism (i) relative to

the total abundance of ith organisms as estimated over the same

geographic region; in H this estimate is defined as pi [84]. To
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estimate H for an SDM we first transformed the Boolean estimate

of species presence (B) for each species so that all undefined pixel

values were replaced with 0 to allow raster multiplication and

define only areas predicted to have species present. We then

multiplied B by the scaled suitability model for each species (s) all

of which were divided by the sum of the product of all species s

multiplied by B. These were defined per species to create the H

parameter pi (equation 1). To define H, all pi raster layers needed to

again be reclassified such that all 0 s were undefined, this allowed

for summation of probabilities over only species present in a

certain location. The H equation, as adapted from Colwell [84],

was then applied (equation 2).

pi~(Bi|si)=(Bi

Xn

i~1

si) ð1Þ

H~{
Xn

i~1

pi ln(pi) ð2Þ

The Shannon Evenness Index (E) was also calculated. The E

standardizes abundance of species across the geographic range of

the organisms and thus allows for a better comparison between

communities/pixels [85]. The E was adapted to an SDM

approach by calculating the total number of species (S) to be

representative of the total number of species across the extent of

the analysis. The summation of Bi for all organisms was used to

calculate S (equation 3), which was subsequently applied to the

calculation of E adapted from Burton et al. [86] (equation 4).

S~
Xn

i~1

Bi ð3Þ

E~
H

ln(S)
ð4Þ

The change in E, or Evenness Delta (D), was then defined by

subtracting the future from the current invasive species diversity/

evenness estimates. This D analysis rescales the output on a 21 to

+1 scale, where 21 is defined as areas of current, highly suitable,

invasive habitat without any future invasive suitability, and +1 is

defined as areas of the greatest invasive suitability change between

the current and future SDM compilations.

A measure of potential habitat degradation, the Additive

Invasibility Index (AII) was then developed by removing all

negative scores from the D analysis and adding only areas that

have an increase in habitat suitability (as defined by D scores .0),

to the baseline E. This analysis assumes that actually or potentially

invaded/degraded habitat is unlikely to revert to non-degraded

habitat. In defining invasibility using a set of species that have

evolved in relatively dissimilar habitat (Table 1), we expected the

overall invasible area to approximate one.

Following the development of the AII, a jackknife test was

conducted to assess the degree of information each EMIP species

adds to the AII. The metric is essentially a measure of area increase

per species defined by assessing the significant difference of each

location in the EMIPs SDM as compared to the overall AII

distribution.

f. Defining the Invasibility of Hawaii’s Critical

Habitat. We overlaid each SDM and invasibility metric with

all proposed and designated critical habitat (essentially the

compilation of all non-overlapping habitat in [87–102]), to assess

the utility of the invasibility metrics as well as to apply these

metrics onto areas of conservation concern. Critical habitat is a

federal management unit that identifies areas essential for the

survival and recovery of 416 endemic Hawaiian threatened and

endangered species, including plants, birds and invertebrates. The

polygons defined for the species were compiled into a single critical

habitat metric because the EMIPs defined here have the potential

to significantly alter native habitat, and thus are relevant to all

species dependent on that habitat. Vulnerability of individual

species/guilds was not defined within this analysis. Only polygons

associated with critical habitat, as defined within the extent of the

main Hawaii islands (extent shown in Fig. 1), were used to develop

the critical habitat metric analyzed here. The overall area (in km2)

of both the baseline and future SDMs/invasibility (and their

respective D) was assessed for the main Hawaiian islands and

critical habitat.

The proportion of habitat defined by the projected invasibility

indices, and SDMs, was also defined for the main Hawaiian

islands, and within critical habitat. To define the proportional

habitat per EMIP SDM/invasibility metric, the thresholded area

of each was divided by the overall land area assessed for the State

of Hawaii (16,677 km2) and within Hawaii’s critical habitat

(3,000 km2).

g. Google Earth .kmz output. Using the R package

‘plotKML’ [103] all species models and invisability metrics were

output in the .kmz format such that they can be interactively

accessed and viewed in Google Earth. Individual species response

plots and variable importance boxplots are plotted within each

species .kmz to allow for interactive assessments of each SDM.

The continuous thresholded SDM projections, and the baseline

and future committee averaging metrics are plotted to help

understand the projection variance within the projections. A

separate .kmz file was also created to interactively present each

overall invasibility metric for each species, as well as an average

committee averaging depiction defined over all species. An outline

of habitats was also overlaid with each SDM/Invasibility matric

within each .kmz file to assess invasive suitability structure within

each polygon.

D. Caveats and Modeling Limitations
a. Model Projections and Collections. In this analysis

climate space is not only determined by the niche preference of

each organism, but also by the distribution and extent of the

collection regime. This collection regime was mostly determined

by organizations that emphasize collection of invasive species data

within areas of conservation concern. Although we attempted to

account for this collection bias by using similarly collected

background points, species location collection constraints may still

be biasing the results in a number of ways. First, there were

sometimes clear differences between the expert defined [43] and

point derived [42] habitat types, especially for SphCoo or PasTar

(Table 1). For these species this discrepancy may be because point

locations were within dry climate regions and growing in localities

that are anthropogenically modified to favor these species. Second,

records for some species were highly unevenly distributed among

islands. For example, despite SphCoo occurring on all major islands,

most records were from Maui, Molokai, and Lanai, while Oahu

and Kauai had none. By having records concentrated in the center

of the archipelago, most values were in the mid-domain for

variables that varied subtly (but consistently) from one end of the
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archipelago to the other (particularly Bio2 and Bio4, which relate

to temperature seasonality). The result is a set SDMs with high

suitability scores on those islands where records occur, and a poor

ability to project to other islands. Finally, because establishment

dates may vary according to the island in which they have

invaded, the individual EMIP analyses may only define a subset of

the available habitat due to non-equilibrium on other islands.

However, E and AII should account for some of the variance in

EMIP collections because the individual SDMs are compiled into

a single metric, and the distributions are still broadly applicable to

invasibility.

b. Critical Habitat Comparisons. The critical habitat

described here has been designated through a formal rulemaking

procedure under the Endangered Species Act of 1973 [87–102]

and cannot be modified without additional formal rulemaking.

Thus, critical habitat does not directly account for projected

changes in habitat degradation. Because these designations are

semi-permanent, the comparison is valid in a theoretical sense;

however, the future interactions are purely hypothetical. We

attempt to account for this lack of predictive ability in critical

habitat designation by using an overall invasibility metric (the AII)

that adds both baseline and future invasibility projections together.

This metric predicts habitat degradation and projects invasive

incursion. By overlaying the AII with critical habitat we attempt to

account for how competitor movement and habitat degradation

may affect Hawaii’s critical habitat, and thus identify areas that

will likely recede due indirectly (i.e. through competitive interac-

tion) to climate change. We are currently working on a more

expansive analysis of the impact of climate change on listed plant

habitats. This work will help to evaluate the future efficacy of

currently designated critical habitat.

Results

All EMIPs selected to define the invasibility index had a mean

risk assessment score of 18.8 and establishment time circa 1908,

(Table 1) indicating that on average they are in the high risk

category [19], and likely close to environmental equilibrium [44].

The AUC and TSS evaluation statistics (Fig. 3) were indicative of

highly descriptive models (AUC.0.8, TSS.0.5) per modeling

approach (GBM, MAXENT, RF). Response plots (Fig. 4)

developed per modeling approach, per EMIP, indicated how the

response of the developed SDM varied across each environmental

covariate. Multiple, EMIP SDMs differed in the manner in which

each environmental covariate was used (Fig. 4), but this

discrepancy is to be expected given the modeling methods

employed [79]. Species-specific responses to each environmental

covariate and variable importance boxplots (for all covariates) are

further visualized in Files S1–S17.

The niche overlap metric Warrens I is shown in Fig. 5. Most

species were found to significantly differ from a distribution

developed using a random subset of their compiled points (Fig. 5).

Of the 122 multi-species overlap comparisons, only eight were

found to be relatively equivalent (p.0.05) (see crossed-out

comparisons in Fig. 5) and none were found to significantly differ

with an overlap value .0.7.

The six different metrics developed to help model invasibility

are shown in Fig. 6. The uncorrected H for both baseline and

future projections (Fig. 6A–B) shows estimates of the invasive

species diversity per site. The DE (Fig. 6E) illustrates areas of both

increased and decreased EMIP suitability, but this decrease in

projected invasive diversity probably does not correlate to a

decrease in habitat degradation/invasibility. Figure 6F is a

compilation of both the current and future projected invasive

diversity indices compiled into a single metric. These metrics

defining invasibility, as well as a compiled species committee

averaging metric for both baseline and future projections, can be

interactively visualized in File S18. The SDMs and both

invasibility metrics (E and AII) predict an increase of invasion

into Hawaii’s upper elevation areas (Fig. 6A–F and Files S1–S18).

The results of the jackknife assessment indicated that four

species (MicCal, PsiCat, LeuLeu and MorFay) added the greatest

amount of novel information (additive area), with MicCal

accounting for ,30% of the novel additive area in the AII

(Fig. 7). While these four species may add the most area to the AII,

the addition of all other species adds to the projected intra-area

diversity defined within the AII, therefore we did not subset the AII

to only account for the density and diversity of these four species.

The actual and proportional area of each EMIP SDM and

invasibility metric within Hawaii and Hawaii’s critical habitat are

defined in Table 3. Table 3 shows areas of the thresholded

suitability metrics and, as such, variance of suitability (a correlate

of density variance) may vary throughout the defined metric. This

is relevant for the AII, where the proportional habitat defined

within Hawaii, and within Hawaii’s critical habitat, is almost

completely overlapping (,0.97 for critical habitat/Hawaii vs. AII).

The E metric showed an overall decrease in habitat area for

Hawaii and Hawaii’s critical habitat (276.52 km2 and

216.70 km2 respectively) indicating that in the future some of

the EMIP SDMs may lose some novel suitable habitat. This is true

for MorFay, PanMax, PenSet and SetPal, and is consistent between

the overall defined area in Hawaii and Hawaii’s critical habitat

(see D Area in Table 3). Although there is some loss in overall

invaded habitat, this loss proves minor (,1%). The SDM defined

for PasTar is descriptive of the greatest amount of suitable habitat

throughout Hawaii and Hawaii’s critical habitat (Table 3),

whereas MicCal, the organism that described the greatest amount

of novel habitat added to the AII, is only the second most widely

projected EMIP (Table 3 and Fig. 7).

Discussion

By identifying, analyzing and combining the geographic

distribution of a set of highly invasive ecosystem altering species

we have developed an invasibility index that describes potential

habitat degradation and models invasive distribution/incursion

through time. With these indices (E and AII), we have identified

potential habitat degradation within management areas essential

to the conservation of threatened and endangered species across

the Hawaiian archipelago, as well as described the development of

a metric that may be useful elsewhere. We have found that

although the modeled distribution of the EMIPs may recede or

expand by end of century, the area of the AII and E affecting areas

designated as critical habitat is similar for both current and future

scenarios (Table 3). Although the E and AII indicate that area

changes are modest, there are substantial projected differences

between the current and future scenarios within critical habitat.

The actual landscape area available for occupation by these 17

invasive species increases by ,11% in 2100 (Table 3, AII minus

the baseline E), due to climate change. For critical habitat this

increase is about 12% (critical habitat AII minus the critical habitat

baseline E). In fact, invasibility is predicted to increase in Hawaii’s

upper elevation areas (Fig. 6A–F and Files S1–S18), a zone where

most of Hawaii’s native species already have been relegated [39].

It is notable that critical habitat has already been designated for

many of these upper elevation ecosystems (see Files S1–S18), so

remediation of invasive species within, and at the boundaries of,

these habitats will be critical in the coming decades.
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Figure 3. Boxplots representing the variability in each model validation metric (AUC and TSS). Boxplots are shown for each modeling
approach used (GBM, Maxent and RF) and compiled for all 500 replicates. The AUC statistic ranges from 0 to 1, where 0.5 characterizes a model no
better than that defined for a random distribution of presence points. The TSS validation metric ranges from 21 to 1, where a model with a score of 0
is no better than random. Notches within each boxplot delineate the 95% probability distribution.
doi:10.1371/journal.pone.0095427.g003
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The invasibility shift modeled here is consistent with other work

characterizing the migration of native and invasive species in

Hawaii and elsewhere [17,84,104–107]. However, our results

show that latitudinal migration to maintain climatic equilibria

under climate change, such as that found in North America

[108,109] and Australia, [32,33,48], will likely not affect Hawaii’s

native or invasive species given its limited latitudinal variation. In

Hawaii, under increasing temperatures, plant species need to

migrate to upper elevation habitat to find temperature equivalent

zones that encompass increasingly smaller areas [7].

Although the area most species occupied increased in size when

projected into the future (Table 3), four species decreased in area

within both Hawaii and the areas within Hawaii designated as

critical habitat. Of these, two highly invasive plants occupying

upper elevation wet forest habitats [110–113], MorFay and SetPal,

had the most drastic decreases in suitable acreage between current

and future projections. These organisms seem to occupy the limits

of the wet forest climatic regime, therefore, as similar climate space

migrates to upper elevations the projected range of the organisms

will likely contract, much like that of native species [114]. These

results seem to contradict that of Yelenick and D’Antonio [111],

where it was shown that the nitrogen fixing MorFay more easily

invades low nitrogen, invasive grass (MelMin) dominated habitat,

and does so more readily than Acacia koa (Fabaceae). Their work

Figure 4. The average response of each species distribution model to each environmental covariate over 500 replicates. The x-axis
defines each covariates environmental range, whereas the y-axis delineates the model response.
doi:10.1371/journal.pone.0095427.g004
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contends that MorFay will expand its distribution in the absence of

competition with MelMin and climate change [111]. Although

seemingly contradictory, their scenario is still likely given that, by

design, the models defined here are projections of invasive habitat

suitability and thus project habitat outside of currently invaded

areas. So, although future climatic suitability of habitat may

contract, expansion may continue as resource competition (e.g.

between MelMin and MorFay) [111] becomes greater.

In the Endangered Species Act of 1973 critical habitat is defined

as a geographic area that has physical and biological character-

istics needed to support viable populations of the species and that

is considered to be essential to the survival of the species for which

it was designated. Designated critical habitat receives protection

from Federal actions that would adversely modify it. Divergence of

these biotic and administrative features of critical habitat occurs

once biotic and abiotic threats modify these ecosystems to a point

where the critical habitat can no longer support viable populations

of the endangered or threatened species for which it was

designated. Because these formal habitat designations do not

account for projected changes in habitat degradation there are

limitations to their use in recovering endangered or threatened

species [115], especially in regards to whether in the future that

habitat is still biologically relevant to the organism(s) that

designation was meant to protect. Critical habitat designations

that have not taken climate change effects into account will need to

be reassessed and possibly revised as climate change progresses; a

complex and time consuming process [116–118]. New designa-

tions of critical habitat that incorporate climate change impacts

into the designation process will enhance the usefulness of critical

habitat under future climate change conditions and will minimize

future resource expenditures on this administrative process. The

metrics developed here can aid in evaluating the current and

future value of critical habitat, and in directing resources to

managing those invasive species that will result in the greatest

protection of habitat that is critical to the long term survival and

recovery of endangered and threatened species. As outlined by

Peters and Darling [115] evaluating the potential for habitat

degradation in any type of native sanctuary is critical to

successfully adapting management strategies to climate change.

Understanding projected habitat changes (through climate

change or invasive incursion) is especially pertinent to native

dominated Wet and Mesic zones on Maui and Hawaii islands,

where high elevation areas above current critical habitat may serve

as future critical habitat under continued warming. However, this

upslope shift will likely be determined by changes to the height and

frequency of the trade wind inversion [105,119] that caps cloud

Figure 5. Warrens I niche overlap metric per EMIP. The upper diagonal shows the variation in niche overlap using circle size and color (low
overlap is shaded green; high overlap is shaded red; extent of overlap is indicated by dot size and red or green color saturation). The lower diagonal
gives the actual overlap metric as colored by the scaling graphic. EMIP species names are here represented by both the complete scientific Latin
name (y-axis) and its coded counterpart (upper x-axis) as defined in Table 1. All insignificant (p.0.05) niche overlap metrics, as derived from a niche
equivalency test, are indicated with an ‘‘X’’.
doi:10.1371/journal.pone.0095427.g005
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heights typically below 2000 meters and leads to an abrupt shift

from wet/mesic habitats to dry/arid mountain tops. Whether the

habitat recedes or migrates, resource competition with invasive

species will likely persist at the habitats’ periphery and potentially

spread to the interior if facilitated by biotic or abiotic factors. This

will be especially apparent in dry forests; a habitat type regulated

Figure 6. Baseline and Future invasibility metrics defining the invasive species diversity per site. The projected current and future
diversity (H) and species evenness metrics (E) (A–D) are shown. The change (D) in evenness (DE = Future E – Baseline E), shows areas of both increased
(red) and decreased (green) projected invasibility over time (E). The Additive Invasibility Index (AII) (F) is the compiled Baseline and Future E. Both
single species models and compiled graphic (Invasibility) outputs can be interactively viewed in Files S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12,
S13, S14, S15, S16, S17, S18.
doi:10.1371/journal.pone.0095427.g006
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more by anthropogenic mediated interactions (habitat destruc-

tion/fragmentation, invasion, and degradation) than by climate

[120]. As such, the invasibility index developed here may help in

evaluating habitats that migrate to climatically equivalent areas,

but will still face continued environmental stress from invasive

competition and incursion.

Given the focus of collecting species location data within areas

of high conservation value, our results bear the greatest relevance

to similar areas across the archipelago. As such, we recommend

that end users constrain the metrics by areas of high conservation

value. Although in this research we have focused on the overlap of

invasibility with critical habitat, there are other areas of

conservation concern such as federal and state refuge/park land,

national forests and private land conservancies, all of which have

easily accessible layers in Google Earth that can be overlaid with

the metrics defined here. The addition of these interactive layers

increases the utility of these invasive SDM metrics to conservation

managers by helping to spatially refine invasive species manage-

ment.

A broad-scale systematic sampling effort for all species would

ultimately improve the individual EMIP SDM predictions and

projections [72,121]. Although the projections would improve

with increased survey effort, the resulting models may still

underrepresent future distributions due to (as yet undocumented)

EMIP tolerance to non-analog climate space. By developing an

iterative modeling approach within the R statistical environment

we have created a toolset that will allow us to re-project the SDMs

with increasing accuracy as more data becomes available from

surveys and analysis of species climate tolerance. So, while we have

analyzed a single future climate scenario, our models can be

expanded to include multiple emission scenarios and different time

steps to explore a range of possible outcomes. With the future

Figure 7. Jackknife validation of the EMIPs significance as compared to the invasibility metric. The y-axis defines, on a 0 to 1 scale, the
number of significantly different pixels as compared to the total invasibility area metric. This metric estimates the proportion of novel habitat defined
per species.
doi:10.1371/journal.pone.0095427.g007
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releases of such climatic datasets we plan to update our analyses

accordingly. The code used to define the models and model

outputs can be found in the supplementary materials (Code S1).

In summary, we have developed a reproducible methodology to

identify species and areas of conservation concern in Hawaii, a

region characterized by both high endemic biodiversity and invasive

pressure. The resulting models are novel in that they are the first

ensemble of multiple EMIPs to geographically delineate, and

rigorously quantify, invasibility in Hawaii. Given Hawaii’s extraor-

dinarily high endemic biodiversity [39] and quantity of endangered

species [34,35], delineating and projecting areas of increased

invasive pressure on native resources is of paramount importance.

Supporting Information

Code S1 R code used for the analyses presented in this

manuscript.

(ZIP)

File S1 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Clidemia

hirta as depicted in a Google Earth .kmz file.

(KMZ)

File S2 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Falcataria

moluccana as depicted in a Google Earth .kmz file.

(KMZ)

File S3 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Hedychium

gardnerianum as depicted in a Google Earth .kmz file.

(KMZ)

File S4 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Lantana

camara as depicted in a Google Earth .kmz file.

(KMZ)

File S5 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Leucaena

leucocephala as depicted in a Google Earth .kmz file.

(KMZ)

File S6 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Melinis

minutiflora as depicted in a Google Earth .kmz file.

(KMZ)

File S7 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Miconia

calvescens as depicted in a Google Earth .kmz file.

(KMZ)

File S8 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Morella

faya as depicted in a Google Earth .kmz file.

(KMZ)

File S9 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Panicum

maximum as depicted in a Google Earth .kmz file.

(KMZ)

File S10 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Passiflora

tarminiana as depicted in a Google Earth .kmz file.

(KMZ)

File S11 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Pennisetum

clandestinum as depicted in a Google Earth .kmz file.

(KMZ)

File S12 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Pennisetum

setaceum as depicted in a Google Earth .kmz file.

(KMZ)

File S13 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Psidium

cattleianum as depicted in a Google Earth .kmz file.

(KMZ)

File S14 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Schinus

terebinthifolius as depicted in a Google Earth .kmz file.

(KMZ)

File S15 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Setaria

palmifolia as depicted in a Google Earth .kmz file.

(KMZ)

File S16 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Sphaer-

opteris cooperi as depicted in a Google Earth .kmz file.

(KMZ)

File S17 Baseline and Future Species Distribution Ensemble

Model (SDM EM) and associated validation metrics for Ulex

europaeus as depicted in a Google Earth .kmz file.

(KMZ)

File S18 Baseline and Future invasibility indices (AII, H, and E)

and associated validation metrics for all invasive species modeled

in this study, as depicted in a Google Earth .kmz file.

(KMZ)
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