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I. LINEAR METHOD OF OPINION COMBINATION

Consider two agents with probabilistic opinions p = {pk}Nk=1 and q = {qk}Nk=1, respec-

tively. A decision maker (which, in particular, may coincide with one of the agents) wants

to combine these opinions together, hoping to get a more reliable opinion.

The linear method of combining p and q into the opinion d of the decision maker amounts

to [1, 2]:

dk = wPpk + wQqk, wP + wQ = 1, 1 ≤ k ≤ N, (1)

where wP and wQ are positive weights that quantify the importance of each agent for the

decision maker.

There are several different axioms on the decision making process that can lead to (1).

We present here the main aspects of them; see [1] for more details.

Eq. (1) is a consequence of the marginalization requirement, where the opinion combina-

tion is required to commute with marginalization of probabilities [1]. This feature is relevant

if the decision maker is interested only in one part of the agent’s full opinion. Alternatively,

(1) emerges from demanding that dk be a function of pk and qk only: dk = F (pk, qk) [1].

An alternative (and perhaps more elegant) way of deriving (1) is to proceed via a varia-

tional principle [3]. Let us slightly generalize (and specify) the situation assuming that we

are given n probabilities p[α] = {p[α]k }Nk=1 (α = 1, ..., n) and corresponding weights w[α]. Each

weight w[α] denotes the probability that the corresponding p[α] is true. Now the combined

probability d∗ = {d∗k}Nk=1 will be determined from the maximization of the average utility

U =
n∑

α=1

w[α]

N∑
k=1

u
[α]
k (d∗) p

[α]
k , (2)

where u
[α]
k (d∗) is the partial utility. We now impose two natural conditions: u

[α]
k (d∗) is

homogeneous (i.e. does not depend on α) and local:

u
[α]
k (d∗) = u(d∗k). (3)

There is an additional condition one should impose on u(.): if there is only one component

α (say α = 1), then the utility
∑N

k=1 u(d
∗
k) p

[1]
k is maximized for d = p[1]:

maxd∗

[
N∑
k=1

u(d∗k) p
[1]
k

]
=

N∑
k=1

u(p
[1]
k ) p

[1]
k . (4)
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This condition is necessary for the utility maximization to have its proper meaning.

The maximization in (4) is easily carried out with help of Lagrange multipliers producing:

u(d∗k) = A ln(d∗k) A > 0, (5)

where the positive constant A can be set to one without loss of generality: A = 1. Using (5)

in (2) and adding there a term that does not depend on d∗ we get for the average utility:

−U =
n∑

α=1

w[α]

N∑
k=1

p
[α]
k ln

p
[α]
k

d∗k
, (6)

which is the averaged (over w[α]) relative entropy (Kullback-Leibler information) [3].

Now maximizing U over d∗k we are back to (1) [3]: d∗k = dk =
∑n

α=1w
[α]p

[α]
k .

II. OPINION REVISING VERSUS UPDATING

As we stated in the main text, our set-up assumes that the state of the world is unchanged.

We mention this condition explicitly so as to avoid confusion between belief revision (which

is the focus of our work), and belief update, which carries a different meaning in the literature

[4, 5]. Belief revision refers to the scenario where one encounters new information about the

unchanged world. Belief update, on the other hand, refers to the scenario where one’s belief

is modified in response to changes in the state of the world [4, 5].

Here is a simple example demonstrating this difference. Consider two systems α and β,

and assume that each of these systems can be in one of two states 0 or 1, so that the joint

state (of the world) can be (α0, β0), (α1, β1), (α1, β0) and (α0, β1).

Assume that our initial belief is that one of the systems is in the state 0. Next, the state

of the world changes somehow, and we receive information that α is in the state 1. This is

going to be our updated opinion. It does not carry any information about β. Now, assume

that with the same initial opinion we learn that the state of the world has not change, but

we receive an information that α is in 1. Since the state of world has not change, the revised

opinion will be that α is in 1 and β is in 0.

III. THE BELIEF-ADJUSTMENT MODEL

This model was proposed by Hogarth and Einhorn in [6]. It assumes discrete-time (k =

1, 2, 3...) dynamics for the anchor point Sk as a function of the (new) evidence xk received
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at step k [6]:

Sk = Sk−1 + w[s(xk)−R], (7)

where s(.) refers to the evaluation of the evidence, w > 0 refers to the interaction strength

and R is a threshold parameter. The model does not operate with probabilities (though the

usage of the anchor point can be traced back to the most probable opinion). Hence it also

lacks a natural representation of acceptance and rejection latitudes and their interaction

with the anchor. In several aspects the belief-adjustment model is similar to the weighted

average approach with a special form of the weights.

Hogarth and Einhorn differentiate between Step-by-Step (SbS) and End-of-Sequence

(EoS) revision strategy [6]. They also have simple/complex task, and we believe our model

for opinion revision relates to the former. They also differentiate between estimation and

evaluation tasks. Under SbS, their evaluation model always predicts recency in agreement

with ours.

Furthermore, their model predicts primacy effect under EoS, with additional assumptions

that initially the agent has not committed to any opinion. In this case, the claim is that

the first piece of evidence serves as an anchor. This point corresponds to the more or less

standard intuition on the relation between confirmation bias and primacy that we criticized

in the main text.

IV. ORDER OF PRESENTATION: ANOTHER ASPECT

The order of presentation effect that we discussed in the main text has another aspect

(we freely use notations of the main text): assume that Q and Q′ persuade P in the same

direction—i.e. mQ > mP and mQ′ > mP—but their distances from the anchor of P are

different: mQ′ > mQ > mP . In which order should Q and Q′ act to yield the maximal

change in P ’s opinion? It is assumed, as in the main text, that both interactions have the

same ϵ and that vQ′ = vQ to make the comparison unambiguous. The answer is again unique

(but this time also intuitive) within the present model: the maximal change—as measured

e.g. by the Hellinger distance—is achieved when the closer opinion acts first:

h[p(x|q, q′), p] > h[p(x|q′, q), p]. (8)
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The same conclusion holds for vQ′ < vQ and mQ′ = mQ, where opinion of Q′ is more distant

from the initial opinion of P .

The message of (8) is intuitive, since the interaction of P withQ′ is weaker: the interaction

with Q prepares the ground for the subsequent action of Q′. But there are experimental

results that seemingly contradict this result [7]. They show that when the most distant

message acts before the less distant one, the opinion changes more than for the reverse

order. We believe that in those experiments the above condition on the same value of ϵ did

not hold. This agrees with the viewpoint expressed by the authors of [7]. If ϵ and ϵ′ are

different, (8) does not hold anymore, and our model can account for the main result of [7].

V. SIGNED MEASURES AND LOCAL VALUES.

Given a set of elements {1, ..., N}, a signed measure ν is an additive function on all

subsets of {1, ..., N}, e.g. ν{1,2} = ν1 + ν2 and ν{1,...,N} =
∑N

k=1 νk. However, in constrast to

probability, signed measures need not be positive, i.e. νk < 0 for some k’s.

There have been several attempts in literature to interpret signed measures as negative

probabilities [8–11]. Below we provide an alternative interpretation of a signed measure

{νk}Nk=1.

Thus, we try to give a tentative answer to the following question: what does it mean that

the opinion of an agent is described by a signed measure ν?

Let us divide

{1, ..., N} = Ω+ ∪ Ω−, (9)

so that νk ≥ 0 for k ∈ Ω+ and νk < 0 for k ∈ Ω−. Let us assume that the state of the agent

has a hidden variable that assumes two values A > 0 and −A < 0.

Given that the agent is in the positive (resp. negative) hidden state, his subjective

probability for the states of the world is {π(k|A)}Nk=1 (resp. {π(k| − A)}Nk=1), while the

probabilities to be in those hidden states are π(A) and π(−A) = 1− π(A), respectively.

Now the signed measure ν is postulated to be the local average of the hidden state:

νk = Aπ(k|A)π(A)− Aπ(k| − A)π(−A). (10)

To determine A, π(k|±A) and π(±A) from within ν we introduce a simplifying assumption
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(cf. (9)):

π(k|A) = 0 for k ∈ Ω−, (11)

π(k| − A) = 0 for k ∈ Ω+, (12)

i.e. there is a rigid correlation between the hidden state and Ω±. We now deduce from (9,

10, 11, 12):

A =
∑
k∈Ω+

νk +
∑
k∈Ω−

|νk|, (13)

π(A) =
1

A

∑
k∈Ω+

νk, π(−A) = 1

A

∑
k∈Ω−

| νk|, (14)

π(k|A) = νk∑
k∈Ω+ νk

for k ∈ Ω+, (15)

π(k| − A) =
|νk|∑

k∈Ω− |νk|
for k ∈ Ω−. (16)

Once we determined the joint probability of the states of the world and the hidden state,

we can easily find the marginal probability of the world’s states:

ν̂k = π(k|A)π(A) + π(k| − A)π(−A)

=
|νk|∑N
k=1 |νk|

. (17)

Let us now relate the presented results to the description of the boomerang effect proposed

in the main text. During the first (integration) step the agent P forms the signed measure

ϵpk +(1− ϵ)qk with ϵ > 1, which—according to the above analysis—is interpreted as a local

value. Then one deduces as in (17) the marginal probability

p̂k = |ϵpk + (1− ϵ)qk|

/
N∑
l=1

|ϵpk + (1− ϵ)qk| , (18)

which describes the subjective opinion of the agent P on the states of the world after the

first step; cf. (49) of the main text.

VI. LYAPUNOV FUNCTIONS FOR REPEATED PERSUASIONS

A. Derivation

Here we show that in

p̃k =

√
pk[ϵpk + (1− ϵ)qk]∑N

l=1

√
pl[ϵpl + (1− ϵ)ql]

, 0 ≤ ϵ ≤ 1, (19)
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the revised opinion p̃ = (p1, ..., pN) is closer to q = (q1, ..., qN).

Let us for simplicity assume that

pk > 0, qk > 0 for 1 ≤ k ≤ N, (20)

and define

zk ≡ pk/qk, z̃k ≡ p̃k/qk. (21)

We choose the indices k such that the following ordering relations hold

z1 ≥ ... ≥ zN . (22)

Eq. (19) implies

z̃k =
ψ[zk]∑N

l=1 qlψ[zl]
, k = 1, ..., N, (23)

ψ[z] ≡
√
z2ϵ+ z(1− ϵ). (24)

For z > 0 and 0 < ϵ < 1 we note the following features of ψ[z]:

dψ[z]

dz
> 0,

d

dz
(ψ[z]/z) < 0. (25)

These relations imply from (22):

z̃1 ≥ ... ≥ z̃N , (26)

z̃1
z1

≤ ... ≤ z̃N
zN
. (27)

Due to ∑N

k=1
qkz̃k =

∑N

k=1
qkzk = 1, (28)

we have from (26):

z̃1
z1

≤ 1,
z̃N
zN

≥ 1. (29)

Hence there exist such a θ (1 ≤ θ < N) that

z̃1
z1

≤ 1, ....,
z̃θ
zθ

≤ 1,
z̃θ+1

zθ+1

≥ 1, ...
z̃N
zN

≥ 1. (30)
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Eqs. (30, 28) lead to ∑m

k=1
p̃k ≤

∑m

k=1
pk, m = 1, ..., N − 1. (31)

Eqs. (22, 26, 28, 31) imply that for any convex [f ′′(y) ≥ 0] function f(y) one gets [12, 13]:∑N

k=1
qkf(p̃/qk) ≤

∑N

k=1
qkf(pk/qk). (32)

Let us demonstrate the implication explicitly, since it is a useful exercise on features of

convex functions. We define

Qk ≡
f(zk)− f(z̃k)

zk − z̃k
, (33)

αk ≡
∑k

l=1
pl, α̃k ≡

∑k

l=1
p̃l, (34)

α0 ≡ α̃0 ≡ 0. (35)

Note that whenever zk = z̃k (for a certain k), we define Qk = f ′(zk) instead of (33).

We deduce from (22, 26) and from convexity of f(y):

Q1 ≥ Q2 ≥ ... ≥ QN . (36)

The sought implication amounts to summation by parts:∑N

k=1
qk[f(zk)− f(z̃k)]

=
∑N

k=1
[pk − p̃k]

f(zk)− f(z̃k)

zk − z̃k

=
∑N

k=1
Qk[αk − αk−1 − (α̃k − α̃k−1)]

=
∑N

k=1
(Qk −Qk+1)(αk − α̃k) ≥ 0. (37)

The last expression is non-negative due to (33) and (31). The boundary terms in the

summation by parts disappear due to αN = α̃N = 1 and to (35).

Now recall that inequalities in (25) are strict. Hence if the initial conditions are chosen

such that all inequalities in (22) are strict, and also if f(y) is strictly convex, f ′′(y) > 0, all

the inequalities leading to (37) can be made strict in the sense that whenever (37) nullifies,

we conclude that p = p̃.
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B. Interpretations

Eq. (26) means that if the ordering (22) stays intact. It can be given following mean-

ing: pk ̸= qk means a disagreement between the opinions of P and Q on the probability

of the event k. There can be two types of disagreement: overestimation (pk > qk) and

underestimation (pk < qk).

Now (22) implies that there exist some ζ, 1 ≤ ζ < N , such that

z1 ≥ 1, ..., zζ ≥ 1, zζ+1 ≤ 1, ..., zN ≤ 1. (38)

All the events 1, ..., ζ (ζ + 1, ..., N) are overestimated (underestimated) from the viewpoint

of Q.

According to (38) the first event was overestimated. Its probability p1 decays, as (30)

shows. Likewise, the last event was underestimated and its probability pN increases; see (30).

Since generally ζ ̸= θ, the correlation between decay and overestimation (resp. increase

and underestimation) need hold for all other events (i.e. for 1 < k < N), but still this

correlation holds in a more limited sense. Eq. (31) means that the sum of probabilities of

the most overestimated event p1 and its neighbours (p2, p3...) decays in time, although (say)

p2 may still indicate on overestimated event, but increase in time for some finite number of

time-steps.

Following the classification of stability notions proposed in [13] for probability dynamics,

(30) can be called the strong Le Chatelier principle. The general heuristics of this principle

in thermodynamics is that [13]: An external influence disturbing an equilibrium state of a

system induces processes tending to diminish the results of the disturbance. For the present

opinion dynamics, the equilibrium state refers to q, while the perturbation over it can be

taken to be p. If the disagreement is taken to be the cause of this perturbation, then the

decay of the probability of the overestimated event (resp. increase for the underestimated

event) makes sense from the viewpoint of the principle.

VII. CONSENSUS REACHING.

Consider the following scenario of mutual influence where P is persuaded by Q and

simultaneously Q is persuaded by P . For repeated interactions, we obtain [normalization
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factors are omitted]

p[n+1](x) ∝
√
p[n](x) [ϵPp[n](x) + (1− ϵP)q[n](x)], (39)

q[n+1](x) ∝
√
q[n](x) [ϵQq[n](x) + (1− ϵQ)p[n](x)]. (40)

where ϵP and ϵQ are the confirmation bias parameters for P and Q, respectively. Ref. [14]

recently studied a similar problem within the weighted average approach; see (22) of the

main text.

For n→ ∞ recursions (39, 40) converge to a stationary density p[∞](x) = q[∞](x) ≡ r(x),

which depends on the initial states p[1](x) = p(x), q[1](x) = q(x), and on ϵP and ϵQ. Let

us discuss the main scenarios for the behavior of r(x) assuming the Gaussian situation for

initial densities:

p(x) =
e
− (x−mP )2

2vP
√
2πvP

, q(x) =
e
− (x−mQ)2

2vQ
√
2πvQ

. (41)

Recall that 1/vλ in (41) may be related to the amount of strength (self-confidence) present

in the opinion.

1. This is a general feature of r(x) (for the sake of concreteness we take mP > mQ): r(x)

is spread over the interval

x ∈ [mQ − 2
√
vQ,mP + 2

√
vP ], (42)

which includes the acceptance latitudes of p(x) and q(x); see (18,19) of the main text. Hence

consensus reaching implies joining of acceptance latitudes for the agents.

2. Equally biased, equally self-confident agents. In this case ϵP = ϵQ and vP = vQ.

If |mP − mQ| is not large (initial opinions are not far from each other), r(x) is centered

at (mP + mQ)/2, i.e. in between of two opinions. If the initial opinions are sufficiently

far from each other, P and Q do develop double-peak structure (cognitive dissonance) in

their consensus opinion r(x). Two peaks of r(x) are located very close to x = mP and

x = mQ, respectively, meaning that each agent has now two equal maximally probable

opinion (anchors): his initial opinion and the initial of the other agent. Thus if two biased

agents with widely different opinions are forced to reach consensus, they are going to develop

cognitive dissonance. This dissonance is decreased (or sometimes eliminated), if the agents

are made less biased.
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3. Non-equally biased, equally self-confident agents: ϵP > ϵQ (for concreteness), but still

vP = vQ. In the previous situation of equally biased agents, the peak of r(x) (if it was

unique) was located at the average opinion (mP +mQ)/2. Now the peak of r(x) is shifted

towards more confirmationally biased agent P.

The convergence of p[n](x) and q[n](x) towards r(x) takes place in two steps: first p[n](x)

quickly spreads over the interval (42) without changing much its maximally probable value.

After that p[n](x) ≈ r(x) does not change anymore, but q[n](x) is gradually (i.e over a longer

time) forced to reach the same maximally probable value as p[n](x). Thus P first accepts to

an extent the opinions of Q (as well as all intermediate opinions), but then gradually forces

Q towards accepting his maximally probable opinion.

4. Equally biased, non-equally self-confident agents: ϵP = ϵQ, but vP < vQ. Now P is

more self-confident. Hence in the consensus reaching, P forces Q to accept his maximally

probable opinion (anchor). For not allowing more self-confident P to impose his maximally

probable opinion, Q can have a larger confirmation bias.
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