
Appendix S1: Statistical Methods for Modeling Demographic Rates of Black-backed 1 

Woodpeckers 2 

 3 

Detection Probability 4 

We modeled detection probability as a function of whether woodpecker i had an active 5 

transmitter during timestep t: 6 

dit = logit-1(α0 + α1τit) 7 

where τit = 1 if woodpecker i has an active transmitter during timestep t, 0 otherwise, and α0 and 8 

α1 are regression coefficients.  We assumed normal ( μ = 0, σ2 = 1,000 ) prior distributions on the 9 

parameters α0 and α1.  Because we do not know exactly how long transmitters lasted if we failed 10 

to observe woodpeckers, we assumed adult transmitters were active for 5 time steps (5 months) 11 

and juvenile transmitters were active for 7 time steps (14 weeks), unless we observed otherwise 12 

(e.g., observed a woodpecker with an inactive transmitter prior to the assumed fail time or 13 

observed a woodpecker with an active transmitter beyond the assumed fail time).  If transmitters 14 

were active beyond the assumed fail time, we assumed the transmitter failed the time step 15 

immediately following the last observation with an active transmitter. 16 

Adult Survival Probability 17 

We modeled monthly adult survival probability as a function of sex, season, habitat, and 18 

number of years post-fire: 19 
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where ςi = 1 if adult woodpecker i is male, 0 if female, γit = 1 if the observation of adult 20 

woodpecker i is made during the breeding season (April –September), 0 if made during the non-21 

breeding season, ad

it  = 1 if adult woodpecker i is occupying habitat created by wildfire at the 22 



end of time step t, 0 otherwise, ad

itx  = 1 if adult woodpecker i is occupying habitat created by 23 

prescribed fire at the end of time step t, 0 otherwise, ad

it  is the age (in years) of habitat created 24 

by wildfire or prescribed fire adult woodpecker i occupied at the end of time step t 25 

  ad 0,1,2,3,4,5it  , and ad ad

0 5,...,   are regression coefficients.  We assumed normal ( μ = 0, σ2 26 

= 1,000 ) prior distributions on the parameters ad ad

0 5,...,  .  Note that the time since fire term 27 

applies only to woodpeckers occupying habitat created by wildfire or prescribed fire, since 28 

ad ad 0it itx    if adult woodpecker i is occupying habitat created by MPB infestations at the end 29 

of time step t. 30 

Juvenile Survival Probability 31 

We modeled juvenile bi-weekly survival probability as a function of habitat (wildfire, 32 

MPB, and prescribed fire), the number of years post-fire, and the number of two-week time 33 

intervals since fledging: 34 
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where juv

it  = 1 if juvenile i occupied habitat created by wildfire at the end of time step t, 0 35 

otherwise, juv

itx  = 1 if juvenile i occupied habitat created by prescribed fire at the end of time step 36 

t, 0 otherwise, juv

it  is the age (in years) of habitat created by wildfire or prescribed fire juvenile i 37 

occupied at the end of time step t   juv 0,1,2,3,4,5it  , δit is the number of time steps juvenile i 38 

has been fledged from the nest at the end of time step t   1,2,..., 21it  , and juv juv

0 4,...,   are 39 

regression coefficients.  Modeling juvenile survival probability as a function of the loge number 40 

of time steps fledged allowed survival probability to change in a non-linear manner.  We 41 

assumed normal ( μ = 0, σ2 = 1,000 ) prior distributions on the parameters juv juv

0 4,...,  . 42 



We fit adult and juvenile MSMR models in WinBUGS [1] via the R2WinBUGS interface 43 

[2].  We simulated posterior distributions of all regression coefficients from 3 Markov chains, 44 

each of which ran for 5.5 million iterations and discarding the first 500,000 iterations as burn-in.  45 

There was evidence of correlation within Markov chains so we kept every 50th iteration to reduce 46 

correlation between successive draws.  Estimates of posterior distributions are thus based on 47 

100,000 draws from each Markov chain for a total of 300,000 random draws from the posterior 48 

distribution of each regression coefficient.  The Brooks-Gelman-Rubin convergence diagnostic 49 

[3] indicated adequate convergence  ˆ 1R   for all regression coefficients. 50 

Daily Nest Survival Probability 51 

We assumed survival (yit = 1) or failure (yit = 0) of nest i during day t was a Bernoulli 52 

random variable: 53 

yit ~ Bernoulli(ψit) 54 

where ψit is the probability nest i survives day t.  We further modeled daily survival probability 55 

as a function of habitat and time since fire: 56 

 

 
 1 nest nest nest nest nest

0 1 2 3logitit i i i i ix x               (Eqn. 3) 

where nest

i  = 1 if nest i is located in habitat created by wildfire, 0 otherwise, nest

ix  = 1 if nest i is 57 

located in habitat created by prescribed fire, 0 otherwise, nest

i  is the age (in years) of habitat 58 

created by wildfire or prescribed where nest i was located   nest 0,1,2,3,4,5i  , and θ0, …, θ3 59 

are regression coefficients.  We assumed normal ( μ = 0, σ2 = 1,000 ) prior distributions on the 60 

parameters θ0, …, θ3. 61 



We fit nest survival models in WinBUGS via the R2WinBUGS interface.  We simulated 62 

posterior distributions of all regression coefficients from 3 Markov chains, each of which ran for 63 

550,000 iterations, with the first 50,000 iterations discarded as burn-in.  There was evidence of 64 

correlation within Markov chains so we kept every 5th iteration to reduce correlation between 65 

successive draws.  Estimates of posterior distributions are thus based on 100,000 draws from 66 

each Markov chain for a total of 300,000 random draws from the posterior distribution of each 67 

regression coefficient.  The Brooks-Gelman-Rubin convergence diagnostic indicated adequate 68 

convergence  ˆ 1R   for all regression coefficients. 69 

Expected Number of Young Fledged 70 

We modeled the number of young fledged (zi) from successful nest i using a zero-71 

truncated Poisson model: 72 

zi ~ truncated Poisson(ρi) 73 

where  k / 1 i

i i e


    is the expected number of young fledged from nest i [4].  We modeled 74 

the number of young fledged as a function of habitat: 75 

  nest nest

0 1 2expi i ix        (Eqn. 4) 

where π0, π1, and π2 are regression coefficients.  We assumed normal (μ = 0, σ2 = 1,000 ) prior 76 

distributions on the parameters π0, π1, and π2. 77 

A zero-truncated Poisson distribution is not among the distributions offered in the 78 

WinBUGS package.  We therefore wrote a Metropolis-Hastings algorithm to sample from the 79 

posterior distributions of model parameters.  We tuned the Metropolis-Hastings algorithm to 80 

have an acceptance probability of approximately 20% [5].  We simulated posterior distributions 81 

of all regression coefficients from 3 Markov chains, each of which ran for 5.1 million iterations 82 

with the first 100,000 iterations discarded as burn-in.  To minimize correlation within chains due 83 



to the accept / reject step in the Metropolis-Hastings algorithm, we kept every 50th iteration.  84 

Estimates of posterior distributions are thus based on 100,000 draws from each Markov chain for 85 

a total of 300,000 random draws from the posterior distribution of each regression coefficient. 86 

Scaling Demographic Rates 87 

We calculated habitat specific fecundity (mh) as a function of habitat specific nest success and 88 

number of young fledged per successful nest: 89 

mh = εh(κh / 2) 90 

where εh is habitat specific nest success, defined as the probability a nest in habitat h successfully 91 

fledges young.  We divided the expected number of young fledged per nest, κh, by 2 because we 92 

assume a 50:50 fledgling sex ratio.  We estimated habitat-specific growth rates by calculating the 93 

dominant eigenvalue of projection matrix Ah. 94 

We calculated habitat specific fecundity, annual adult survival probability, and the 95 

probability a juvenile survives to the adult stage class as a function of the regression coefficients 96 

estimated from demographic analyses above and habitat-specific covariates.  We calculated 97 

habitat-specific annual female adult survival as: 98 
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 99 

where Iwild and IRx are indicator variables = 1 if habitat h is wildfire or prescribed fire, 100 

respectively, 0 otherwise, and 
ad ad

0 5
ˆ ˆ,...,   represent random samples from the posterior 101 

distributions of regression coefficients defined in Eqn. 1.  Equations are raised to the 6th power 102 

because adult survival probability was modeled on monthly time steps.  Note the term 
ad

2̂103 

represents the regression coefficient for season-specific adult survival probability, which is why 104 



the term is excluded from the equation for 6 months.  We calculated the habitat-specific 105 

probability a juvenile will survive to an adult as: 106 
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         107 

where 
juv juv

0 4
ˆ ˆ,...,   represent random samples from the posterior distributions of regression 108 

coefficients defined in Eqn. 2.  Note that the estimate of the probability a juvenile survives to the 109 

adult stage class incorporates a different survival probability for each time step fledged.  By 110 

multiplying this term over 21 time steps, we assume a fledge date of approximately 24 June and 111 

that juveniles transition to the adult stage by approximately 1 April the following year.  We 112 

calculate habitat-specific nest success as: 113 
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where 0 3
ˆ ˆ,...,   represent random samples from the posterior distributions of regression 115 

coefficients defined in Eqn. 3.  Our calculation of habitat-specific nest success assumes a 36 day 116 

nesting period (incubation period = 13 days, nestling period = 23 days), which was based on 117 

observed length of nesting periods and closely corresponds with the published literature [6], [7].  118 

Our nesting period was three days longer than [6] because we assumed the nest was at risk of 119 

failure the day the first egg was laid.  Finally, we calculated the expected number of young 120 

fledged in habitat h as: 121 

k
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, 122 

where 123 
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and 
0 2

ˆ ˆ,...,   represent random samples from the posterior distributions of regression 125 

coefficients defined in Eqn. 4. 126 

We estimated the posterior distribution of habitat specific fecundity, annual adult survival 127 

probability, and the probability a juvenile survives to the adult stage class by repeatedly 128 

sampling from the posterior distributions of component regression coefficients.  This repeated 129 

sampling allowed us to propagate uncertainty in estimated regression coefficients.  We repeated 130 

this process 300,000 times for each habitat-specific demographic rate.  Finally, we estimated the 131 

posterior distribution of habitat-specific growth rates by constructing 300,000 random projection 132 

matrices for each habitat, with each cell element comprising a random draw from the posterior 133 

distribution of habitat-specific adult survival, juvenile survival, and fecundity. 134 

Life-stage Simulation Analysis 135 

We calculated the proportion of variation in population growth rates explained by variation in 136 

component demographic rates by first regressing estimates of population growth rates (the 137 

dominant eigenvalue of Ah) against the random values of adult survival, juvenile survival, nest 138 

success, and expected number of female young fledged used to construct Ah (life-stage 139 

simulation analysis [8]).  We next calculated the coefficient of determination (r2) from each 140 

regression model to calculate the proportion of variation in λ explained by variation in each 141 

component demographic rate (Fig. S3).  142 
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