File S2: Inter-organ metabolic network reconstruction
In this study, we had to analyze the plasma metabolic profile of prepubertal girls at the post-absorptive state. The latter is characterized by gut emptiness and utilization of energy from body stores, i.e. glycogen and fat. To relate the plasma metabolic profile to the metabolic physiology of the children to be able to extract biologically relevant conclusions, we had to reconstruct the inter-organ metabolic network based on available information in the literature, metabolic databases and our metabolomic data. Below, we combine information about the metabolic physiology of the post-absorptive state that we collected from the literature and assisted us in the metabolic network reconstruction.
At the post-absorptive state, tissues take up glucose from the blood to metabolize it. The consumed circulating glucose should be replenished by the liver through glycogenolysis or gluconeogenesis; it is considered that each route contributes half of the total glucose production in the liver at the post-absorptive state [1,2]. The recycling of glucose and lactate is described as the Cori cycle [3].
[bookmark: _GoBack]Glucose produced from glycerol originates from the breakdown of fatty acids (FA) in adipose tissue. If FA were to form triacylglycerol for storage, glycerol should be converted to glycerol 3- phosphate in the liver and be transferred to adipose tissue for FA biosynthesis, as the activity of glycerol kinase is highest in the liver [4]. In the post-absorptive state, instead, lypolysis is more active than lypogenesis and there is a net release of FA and glycerol from adipose tissue [5,6]. Glycerol 3-phospahte can be converted to glycerone-phosphate [4] and contribute to gluconeogenesis [7]. Glycerol can also be oxidized to glyceraldehyde, which in turn is phosphorylated to glyceraldehyde 3-P [8], another intermediate product of gluconeogenesis. Glycerone-phosphate and glyceraldehyde may also be produced from the breakdown of fructose 1-phosphate, which originates from phosphorylation of fructose [8,9]. Except from its uptake from blood, fructose also originates from the oxidation of sorbitol through the action of sorbitol dehydrogenase, an enzyme found present in all rat tissues with highest mRNA levels in the liver [10] and also detected in human liver [8]. Aldehyde dehydrogenase and glycerate kinase are responsible for the conversion of glyceraldehyde to glycerate and then to glycerate 2-phosphate, respectively, but the activity of glycerate kinase is significantly low in the human liver, this having been proposed as a reason for the accumulation of glycerate in the case of its increased production [8]. Glycerate metabolism has also been coupled to glyoxalate/oxalate and hydroxypyruvate metabolism (not shown in the reconstructed metabolic network) [11,12]. 
In the post-absorptive liver, the amino acids may also serve as substrates for gluconeogenesis. The main origin of amino acids in the blood is the protein breakdown occurring inside muscle cells [13]. However, the relative concentration of each amino acid does not reflect the composition of muscle proteins [14]. In fact, glutamine and alanine are the most abundant amino acids in blood samples [15]. Amino acids also serve as signaling and regulatory molecules [16]. Regarding their use in the energy metabolism alanine and glutamine are the two amino acids mainly used in the energy metabolism at the post-absorptive state [17], each being involved in different metabolic and physiological processes. Alanine in muscles originates largely from the transamination of pyruvate [18,19], while it accounts for half of the total hepatic amino acid uptake [20]. The liver does contain active alanine transaminase [21], being able to regenerate pyruvate to be used for gluconeogenesis [22]. 
Gluconeogenesis is active in the kidney too; actually, the glucose production in kidney and liver are equal per gram of tissue [23]. Glutamine may be a substrate for gluconeogenesis in the kidney, but is also coupled with nitrogen metabolism. Glutaminase and glutamate dehydrogenase deaminate glutamine and glutamate, respectively (glutamate may also be transaminated, not shown), generating alpha-ketoglutarate, used for glucose production, and ammonia, involved in acid-base homeostasis [17,24,25]. However, in the liver, deamination of glutamine and glutamate is directly associated with urea biosynthesis [20], as any ammonia released in hepatocytes is readily fixed into urea [26,27].  The intestine is also a fair site of ammonia production [26,28]. Periportal hepatocytes are responsible for urea synthesis, while any nitrogen in the form of ammonia that escapes from these cells is fixed to glutamine in the perivenous hepatic cells before entering the systemic circulation (not shown)[27-29]. 
In blood plasma, citrate is the most abundant TCA cycle intermediate and can cross cell membranes. High levels of intracellular citrate can slow down glycolysis and this metabolite can be used as substrate for FA biosynthesis indicating high activity of energy metabolisms [30]. However, at the post-absorptive state there is a net breakdown of FA at the organism level [5] and the high concentration of citrate should be associated with increased levels of lipolysis. In the kidney, the use of citrate is associated with acid-base homeostasis [31]. In addition, divalent ion physiology is in cohesion with citrate metabolism, as it can chelate Fe2+, Ca2+ and Zn2+ ions [32]. 
Regarding the metabolism of glyoxylate and oxalate synthesis, glyoxal is a major precursor of glycolate and glyoxylate in humans and originates from a variety of physiological sources, e.g. autoxidation of carbohydrates and ascorbate, degradation of glycated proteins and lipid peroxidation [33]. Serine and glycine are also significant entry points of carbon into this pathway [34] and oxalate synthesis is directly linked with glyoxylate metabolism [35] predominantly in the liver [36].
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