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Information-based Receptive Field Estimation

Information-theoretic RF estimation seeks to find one or more linear filters of a neuron irrespective of
employed stimulus ensemble and neural nonlinearity [1,2]. The goal is to find the directions that maximize
the amount of explained mutual information (MI) between stimulus and response, which corresponds to
maximization of the Kullback Leibler divergence between the two distributions. For the single filter
model, MI is given by

MI(k̂) =

∫
X

dxPk̂(x|y = 1) log2

[
Pk̂(x|y = 1)

Pk̂(x)

]
(1)

with Pk̂ denoting the distribution of projections x onto the filter estimate k̂.
For comparison, we also applied the MID algorithm using the numeric code available from http:

//cnl-t.salk.edu to our data. It implements simulated annealing and early stopping to prevent local
maxima and overfitting, respectively. We started the employed combination of gradient ascend and
simulated annealing algorithm with different numbers of iterations ranging from 50 to the dimensionality
of the linear filter. We found the number of iterations after which the amount of explained MI does not
change to be 400 for simulations and 500 for neural data. The annealing parameters were the same as
described in [2].

Fitting of the Poisson Generalized Linear Model

The Poisson GLM assumes that the spiking process is a conditionally inhomogeneous Poisson process
with rate ri ≡ f(si

Tk), i = 1, 2, , ..., N . The log-likelihood of observing a spike train given the model
parameters Θ = {k, µ} is given by

L(Θ) =

N∑
i=1

ni log(ri)−∆

N∑
i=1

ri + c (2)

where ni is the number of spikes in the ith time bin, ∆ the bin width, and c a constant independent of Θ.
For both simulations and neural recordings the bin width was small and the response essentially binary.
The canonical inverse link for the Poisson GLM is the exponential and the maximum a posteriori (MAP)
estimate is given by

L(Θ) =

N∑
i=1

(
si

Tk + µ
)
−∆

N∑
i=1

exp
(
si

Tk + µ
)
− λk

Tk

2
(3)

where the regularization term on the right-hand side prevents overfitting.
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The problem in Eq. (3) is convex and can be solved by standard gradient-ascent algorithms. Similarly
to the CbRF method we used a trust region Newton algorithm to find the parameters of the model and the
hyperparameter λ is found by maximizing MI between stimulus and response in a 5 fold cross-validation
setting. We also test the log-likelihood as optimization criterion. However, MI yielded significantly better
results for both simulations and neural recordings.

Reverse Correlation Receptive Field Estimation

The STA is the mean stimulus preceding a spike given by

k̂STA ∝ 〈sr〉r=1 , (4)

with 〈·〉r=1 denoting expectation over the spike-eliciting stimulus ensemble. Without loss of generality,
it is assumed that 〈s〉 = 0. Second-order correlations in the stimulus can be removed by decorrelating
Eq. (4) using the inverse of the autocovariance matrix yielding

k̂decorr ∝
〈
ssT
〉−1 〈sr〉 . (5)

This is mathematically equivalent to least squares linear regression.
Inversion of the auto-covariance matrix may result in an overamplification of high-frequency noise.

To avoid such overfitting along undersampled dimensions we used a regularization scheme based on ridge
regression yielding

k̂ridge ∝
〈
ssT + λI

〉−1 〈sr〉 , (6)

with a D ×D identity matrix I, regularization parameter λ ≥ 0, ranging from an unregularized solution
(λ = 0) to the STA (λ→∞) [3].

In a Bayesian interpretation, the ridge regression modification is equivalent to bias k towards solutions
that are more probable with respect to a given multivariate prior distribution, which is Gaussian in this
case, resulting in more sparse solutions. We used the regularization parameter that yielded the highest
MI between stimulus and response (see Eq. (1)) in 5-fold cross-validation setting.

We also tested a regularization scheme based on singular value decomposition of the auto-covariance
matrix. This form of the STA is also known as normalized reverse correlation (NRC, [4]). However, we
found that ridge regression produces significantly better estimates for both simulated data and neural
recordings.

Bias in the STA due to higher-order correlations in the stimulus
ensemble

To investigate robustness of the different methods to higher-order correlations in the stimulus ensemble
responses r were simulated using a LNP model with an exponential nonlinearity of the form [5]

r =
∥∥sTk∥∥p

+
(7)

where ‖·‖+ denotes half wave rectification (using only the positive projections of the stimuli onto the
linear filter k) and p ∈ N+ is the order of the nonlinearity. The filter estimate computed by the STA
method (cf. Eq. (4)), setting p = 2, is given by

k̂ ∝
〈
s
∥∥sTk∥∥2

+

〉
+
, (8)
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denoting by 〈·〉+ the expectation over all stimulus examples with r > 0, and its ith component is

k̂i ∝
∑
j

∑
k

kjkk〈sisjsk〉+. (9)

Hence, k̂i depends on third-order correlations 〈sisjsk〉+ and may assume non-zero values even if si does
not lie in the dimensional support of the true linear filter (ki = 0). For q > 2, also correlations of higher

order contribute to k̂i.
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