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econometrician: A rational model of preference

understanding in children”

This document contains details of the MML (Mixed Multinomial Logit)
model, its application to the experiments in the main text, and alternatives
to the Luce-Shepard choice model. Section 1 describes the central features of
the model as it applies to all of the experiments. Sections 2, 3, and 4 detail
the application of the model to the experiments of Kushnir et al. [6] and Hu
et al. [4], Fawcett & Markson [2], and Repacholi & Gopnik [9], respectively.
Section 5 addresses alternative choice models.

1 The mixed multinomial logit model

This section covers details of the MML. After describing basic properties of the
MML as applied in this paper, it describes how predictions were generated for
each of the three sets of developmental studies: Kushnir et al.’s and Hu et al.’s
statistical preference learning studies; Fawcett and Markson’s generalization
results; and Repacholi and Gopnik’s developmental transition.

A central feature of the MML is the choice rule that it assumes, namely that
the probability of choosing an option increases exponentially with that option’s
utility, which is taken to be the sum of its features’ utilities. In other words, if
we let xi be a binary vector indicating whether an option i possesses each of a
set of features, and β be the utility that the agent of interest assigns to those
features,1 we can express the utility of option i for an agent as the inner product
of these vectors. The probability of that agent choosing option i is then

P (c = i|X,β) =
exp(βTxi)∑
j exp(βTxj)

, (1)

where X represents x1, ...,xJ , the features of all of the options. We can also
integrate out β to obtain the choice probabilities given just the features of the
options, giving

P (c = j|X) =

∫
exp(βTxi)∑
j exp(βTxj)

p(β) dβ. (2)

1We will refer to the utilities of features as “preferences” to distinguish them from the
utilities of options.
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While MML models can approximate the distribution of choices for essen-
tially any population of utility-maximizing agents given appropriate choice of
prior p(β) [7], we use a common variant which supposes that β follows a Gaus-
sian distribution around a population mean which itself has a Gaussian prior.
In the case where no inferences are being made about average population-level
preferences, this prior reduces to a single Gaussian with a fixed mean. We as-
sume that mean to be zero for all features, consistent with the view that, in the
absence of information to the contrary, a feature is unlikely to be very desirable
or undesirable. More precisely, our prior is a Gaussian distribution with mean
zero and variance σ2: β ∼ N (0, σ2I), so that preferences are independent across
agents and features. The variance term σ2 is the only free parameter.

2 Inferring preferences from statistical informa-
tion

In order to make predictions for Kushnir et al.’s experiment, we first obtained
a distribution over preferences given Squirrel’s choices and options, and used
those preferences to predict what object Squirrel would have chosen next.

Let β be Squirrel’s preferences, c = (c1 . . . cN ) the sequence of N choices
Squirrel makes, and Xn = [xn1 . . .xnJn ]T the observed features of Squirrel’s
Jn options at choice event n. The set {X1, . . . ,XN} will be denoted with X.
Estimating β entails computing p(β|c,X) ∝ P (c|β,X)p(β), analogous to the
inference to u in Equation 1 in the paper text. The probability of Squirrel’s
choices is P (c|X,β) =

∏N
n=1 P (cn|Xn,β), where P (cn = j|Xn,β) is given by

Equation 1.
We represented the objects using minimal and orthogonal feature vectors, so

red discs (Squirrel’s target toy) had features [1 0 0]T , blue flowers (the alternative
option in his choices) had features [0 1 0]T , and yellow cylinders (the distractor)
had features [0 0 1]T , respectively. Each of the 38 objects was a separate option,
where 38, 19, and 7 of the objects had features of the target object in the
100%, 50%, and 18% conditions, respectively, with the remainder having the
features of the alternative object. The N = 5 choices made by Squirrel thus
provide the data c from which its preferences can be inferred. We constructed
an approximation to the posterior distribution over β given c using importance
sampling (see, e.g., [8], for details), drawing 1E6 samples of β from the prior
distribution p(β) and giving each sample β(i) weight wi proportional to the
corresponding likelihood P (c|X,β(i)).

The probability that the child will offer a particular item can be computed by
assuming that the child matches the predicted probability that Squirrel would
choose an object, integrating out β:

P (cchild = j|X, c) =

∫
P (cchild = j|X,β)p(β|X, c) dβ, (3)
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Figure S1: Sensitivity of model fits to setting of variance parameter, using data
from Fawcett & Markson and Kushnir et al.

which is approximately equal to

1∑
i wi

∑
i

P (cchild = j|X,β(i))wi. (4)

Figure S1 shows that the goodness of fit is generally insensitive to the as-
sumed variance of other people’s preferences, σ2, provided σ2 > 1.

Note that model has two free parameters, including a variance term that
determines the prior distribution over preferences, and the number of distinct
features that each object possesses (one, in this case). Increasing the total
number of features has the same effect as increasing the variance term: as the
number of independent features increases, so does a priori absolute value of
each option’s utility.

3 Generalizing preferences to novel objects

As discussed in the main text, Fawcett et al.’s task involves two inferences. For-
mally, the first inference amounts to estimating p(βa|X, c) for a = 1 (for Actor
1, whose preferences match the child’s) and a = 2 (for Actor 2, whose prefer-
ences differ), and it takes the same form as the preference learning described in
the previous section.

Let the features of Actor a’s preferred object in round n be xna, let the
features of the same-category novel object be xsa, and let the features of the
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different-category novel object be xda. When the category of a novel object is
irrelevant, we will use x∗a ∈ {xsa,xda} to denote its features. The child’s goal
is to learn what features x∗a a novel object is likely to have, which permits her
to know how much she will like each of the two novel objects and pick the better
one. The available information includes the observed affective response of agent
a, the features of the objects from the previous rounds X, and the choices c of
the agent on the previous rounds. Under our model, the distribution of a novel
object’s features given this information is

P (x∗a|X, c, ra) =

∫
P (x∗a|βa, ra)p(βa|X, c) dβa, (5)

where P (x∗a|βa, ra) is the posterior distribution over the features of the novel
object given the preferences and affective response of the agent. Computing this
distribution requires defining a likelihood P (ra|x∗a,β) and a prior on features
P (x∗a). We deal with these problems in turn.

The likelihood P (ra|x∗a,βa) reflects the probability of the agent producing
a particular affective response given the properties of the object and the agent’s
preferences. In the experiment, the affective responses produced by the actors
were of two types. In the positive condition, the actor declared that the hidden
object was her favorite of the type. If one takes the actor’s statement at face
value and supposes that the actor has encountered an arbitrarily large num-
ber of such objects, then this favorite object has the most desirable possible
combination of features given its category, possessing all category-appropriate
features with positive utility, and no features with negative utility:

P (x∗a|βa, ra = “positive”) ∝ 1 for x∗a = arg max
x∗a

βT
a x∗a, else 0. (6)

In the negative condition, the action – saying “there’s a toy in here, but I don’t
like it”– communicates negative utility, or at least utility below some threshold
we assume to be zero, so the object could be any member of the category with
negative utility:

P (x∗a|βa, ra = “negative”) ∝ 1 for βT
a x∗a < 0, else 0. (7)

In defining the prior distributions from which the features of both the observed
objects and the novel objects are sampled, it is important to represent differ-
ences between categories. Our feature vectors were concatenations of category-1
features, category-2 features, and multiple-category features, where each feature
was present with probability 0.5 if its category could possess the feature, other-
wise zero. We arbitrarily chose four features per category, for a total of twelve.
As in the previous application of the model, increasing the number of features
and increasing the variance term has the same basic effect on inferences, mak-
ing them more extreme. It also was necessary to make an assumption about
the extent to which different categories share features. This term influences
how strongly or weakly inferences generalize across categories, and rather than
fitting it, we chose a one-to-one ratio of intra- and inter-category features.
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This combination of prior and likelihood function yields a posterior distri-
bution over x∗a, which can then be used to estimate the utilities of the hidden
objects as a function of the child’s own preferences. Unfortunately, we do not
have direct access to the preferences of the children in this experiment, so we
must estimate them from the children’s choice data. We did this using the same
procedure and priors as for the adults’ utilities. That done, we apply the choice
rule again to obtain choice probabilities for the novel objects selected by the
children.

4 Developmental differences

To model the developmental shift described in Repacholi and Gopnik – their re-
sults are summarized in Table S1 – we conducted three sets of simulations. In the
first set, which was designed to include interpretable and plausible features and
options, we generated a series of choices by three agents: k choices by a parent,
k choices by a sibling, and 10k choices by the child, with k ∈ {1, 5, 10, 20, 50}.
Each choice was made from four options selected randomly without replacement
from the set in the middle set of rows in Table S2. Two additional choices were
appended to these data: one in which the child chose a goldfish cracker over
broccoli, and one in which a new agent chose broccoli over the goldfish cracker.

The probability of offering the goldfish cracker to the actor was equal to the
probability that the actor would choose the goldfish cracker herself, given by

P (c = broccoli|d) =
∑

m∈{m1,m2}

P (c = broccoli|m, d)p(m|d). (8)

The probability of model m1 (same preferences) versus model m2 (distinct
preferences) is given by

P (m|d) =
P (m)P (d|m)∑

m′ P (m′)P (d|m′)
(9)

where d includes all of the available data, including choices c, options and their
features X, and the identity of the agent making the choice, a = (a1, a2, ..., aN ).

Assuming that the identities of the agents and the available options are
given,

P (d|m) =

∫ N∏
i=1

P (ci = j|X,βa)p(βa|m, ai) dβa. (10)

If m = m2, then ai determines which agent’s preferences are applicable at
choice event i, while under m1, the same preferences are used for all choice
events, independent of ai.

We generated predictions over fifteen separate runs, each with different, ran-
domly selected options at each choice event. We used importance sampling to
estimate the model and choice probabilities, drawing 2.5E4 samples per run
per point in Figure 3 in the main text. For each sampling run, the high di-
mensionality of the space of preferences made it necessary to obtain proposal
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Table S1: Summary of results from Repacholi and Gopnik, showing number of
children in each condition (matched/unmatched) who offered broccoli, cracker,
or neither.

Unmatched
Age Cracker Broccoli Neither

14-mo 7 1 34
18-mo 8 18 15

Matched
Age Cracker Broccoli Neither

14-mo 13 5 21
18-mo 22 7 8

distributions concentrated around the posterior, which we achieved by estimat-
ing preferences using 1.5E4 MCMC samples and generating proposals from a
t-distribution fitted to those samples.

A second set of simulations using the same features demonstrated that the
same effect occurs if the learner has direct access to his or her own preferences.
In this case, the simpler model assumed that all individuals had preferences
equal to the child’s own. The more complex model used a prior centered on
the child’s own preferences – equivalent to combining the observed preferences
with an uninformative prior – but did not assume that all agents’ preferences
are equal. Sixteen runs, using the same features and options as the first set of
simulations, revealed a shift from predicting a goldfish preference for the new
actor (P (goldfish) = .67) after 10 choice events involving a sibling or caregiver to
predicting a preference for broccoli (P (goldfish) = .47) after 100 choice events.

We conducted a third set of simulations using a minimal set of features and
objects, similar to those used in modeling Kushnir et al.’s results. There were
three options, each with a single unique feature. The first option represented a
goldfish cracker and the third represented broccoli. We represented three agents
with preferences that all favored the cracker, but varied in their strength, shown
in Table S3.

Because of the lower dimensionality of the preferences in Simulation 3, it
was possible to use importance sampling alone to perform inference, using 3E6
samples per run. We conducted sixteen separate runs with all three options
present at each choice event. We generated a series of k choices each agent,
with k ∈ {2, 4, 8, 16, 32, 64, 128}. The results, shown in Figure S2, mirror those
from the first two simulations.

5 Alternative choice models

In any rational analysis, a central assumption is that a learner’s expectations
are matched to the statistics of the environment [1]. As it applies to our analysis
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Table S2: Preferences and features for objects used to establish a developmental
transition in theories of preference in simulation of Repacholi and Gopnik, for
Simulations 1 and 2.

Features
Preferences fruit/vegetable soft sweet liquid milky starchy

self 0 1 1.4 0.6 1.2 1.5
sibling 0.25 2 1.2 0.55 1.3 1.25
parent 0.5 3 1 0.5 1.4 1.0

Options
raw vegetable 1 0 0 0 0 0

cooked vegetable 1 1 0 0 0 0
fruit 1 0 1 0 0 0
juice 1 0 1 1 0 0

dairy, not dessert 0 0 0 1 1 0
dairy, dessert 0 1 1 0 1 0

bread 0 1 0 0 0 1
cereal 0 0 1 0 0 1

desserts 0 1 1 0 0 1
soft drinks 0 0 1 1 0 0

broccoli 1 0 0 0 0 0
goldfish 0 0 0 0 0 1

Table S3: Preferences used to generate data for Simulation 3.

Features
Preferences feature-1 feature-2 feature-3

Agent 1 3.0 1.5 0.0
Agent 2 2.0 1.0 0.0
Agent 3 1.0 0.5 0.0
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Figure S2: Results of the third set of simulations showing an evidence-dependent
shift in preference judgments. Each line shows the mean across 16 simulations,
with standard errors. The upper dashed line marks the proportion of 14-month-
olds who offered the actor goldfish over broccoli (7 of 8), while the lower dashed
line marks the proportion of 18-month-olds who did so (8 of 26).
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of preference learning, that assumption requires a choice model that accurately
describes human choice behavior. The greatest challenge to the MML’s choice
model is that its assumption that people maximize their own stable, subjective
utilities breaks down in the face of certain kinds of decoy effects. Specifically,
introducing a “decoy” option with specific relationships with extant options can
change people’s choices [5, 12], a result that is not anticipated by the version of
the MML that we have adopted.2 A well-known case is the attraction effect : the
MML predicts that introducing new alternatives will never make someone more
likely to choose a particular option, yet when a new alternative is introduced that
is asymmetrically dominated, or strictly worse than only one of two options, then
people become more likely to pick the dominating option [5]. Other phenomena
that cannot be explained by our specific model include the similarity effect [13],
and the compromise effect [12], in which choice probabilities are influenced by
new alternatives that are similar to one option or make one option appear to be
a compromise between two extremes.

If we relax the assumption that other agents choose utility-maximizing op-
tions, it opens the door to a range of other models. Exploring such models may
be useful in understanding what assumptions children and adults make about
the factors that influence other people’s decisions. One natural place to look
for alternatives is the set of choice models that predict some or all of the decoy
effects that frustrate the MML. If these models better capture the natural statis-
tics of choices, they might be more suitable than the Luce-Shepard rule, leading
to a “more” rational model of preference learning. One such choice model is
Tversky et al.’s “elimination by aspects” (EBA) model of decision-making [13],
which posits that people identify a desirable feature, discard options that lack
that feature, and repeat the process with new features until only one option
remains. This choice model can be used instead of the Luce-Shepard rule: a
person’s preferences under this model are feature weights, or the probabilities
of using specific features to eliminate options. These weights are sufficient to
estimate choice probabilities for a set of options, providing a likelihood function.

If we establish a prior over weights, then, as with the MML, Bayes’ rule pre-
scribes how preferences can be learned from choices. In its basic form, however,
the EBA model fails to explain children’s inferences in the studies we consider:
Kushnir et al. found that children are sensitive to the number of alternatives
rather than merely their observable features, while the EBA model is insensitive
to counts of options – all options lacking a particular feature are eliminated at
once, and additional same-feature items do not influence choice likelihoods.

It is possible to extend EBA-based models of preference learning to make
them sensitive to option counts by adding random hidden features. This can
be done by using a non-parametric Bayesian approach (e.g, [3]) – which makes
inference intractable for the problems we consider – or treating the number of
hidden features as an additional free parameter. We applied an EBA-based
model to Kushnir et al.’s results, using both half-normal and Dirichlet priors

2This discussion will focus on instances of the MML using normal priors and no a priori
assumptions about correlations between preferences. Given arbitrary priors, the MML can
predict decoy effects, but at the expense of the simplicity we have emphasized.
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on feature weights and between zero and forty hidden features, optimizing all
parameters to fit the data. The best fits occurred with a Dirichlet prior with
a concentration parameter of 0.15 and thirty hidden features, but these still
gave a worse account of the data than the MML (MSE = .02 versus .008). We
did not apply the EBA model to the other experiments because of its relatively
poor performance in this case and the prohibitive computational cost of using
it: whereas the MML has an analytic likelihood function, the EBA model’s
likelihood function required hundreds of samples to be drawn per likelihood
value computed, and would have taken prohibitively long to generate predictions
for Fawcett and Markson’s data.

Other models been used to predict choice-making in the face of decoy effects,
but it is unclear how they could be used to explain preference learning. To illus-
trate, we will consider two such models. The first, described by Roe, Busemeyer
and Townsend [10], models the process by which choices are made, where val-
uations evolve over time until one option is chosen when its valuation crosses
an inhibitory threshold. This model represents an individual’s preferences using
two sets of variables: valuations for different features of the available options,
and variables that determine the bias and temporal dynamics of attention to
different features. In principle, one could define priors over these parameters,
determine a likelihood function for choices given their values, and use Bayesian
inference to estimate the probable values for a given individual. The problem
in inverting this model to recover preferences lies in its temporal aspect: a sin-
gle choice emerges after a potentially large number of iterations in the model,
with the consequence that it is extremely time-consuming to accurately deter-
mine the likelihood of a given choice. This problem is compounded by the large
number of parameters, which includes a matrix of feedback weights and more
in addition to the (|options| + 1)|features| parameters that capture valuations
and weights. It may be possible to develop heuristic approximations for choice
likelihoods that are broadly consistent with this model, but in that event one
might do better to build a heuristic model of preference learning directly. A
second choice model, developed by Schneider, Oppenheimer, and Detre [11],
accounts for decoy effects by assuming that people make choices in a process
by which options are scored according to their rankings relative to distinct ob-
jectives, such as minimizing risk or maximizing expected value. While it offers
a parsimonious explanation of decoy effects, Schneider et al.’s model does not
include any specification of how individual preferences shape a person’s choices,
and thus cannot be used to develop a model of preference learning.
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