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Text S1:  Proofs, formulations and simulation study 
 
 

Part A: 
Derivations for the traditional quantitative genetics model of SNP markers with 

unequal and equal allele frequencies 
 

The two alternative alleles of the SNP are denoted by A1 and A2 with allele 
frequencies p(A1) = p and p(A2) = q. Hardy-Weinberg equilibrium (HWE) is assumed so 
that the genotypic array satisfies: p²A1A1 + 2pqA1A2 + q²A2A2 = (pA1 + qA2)². Details for 
deriving the traditional quantitative genetics model of additive and dominance effects are 
summarized in Table A1.1, which is essentially the same as in Falconer and Mackay [1] 
except that the genotypic value for each SNP genotype used a general notation gij (i,j = 
1,2) to allow the derivation of the relationship between the genotypic values and additive 
and dominance effects. 

 
Table A1.1 Calculation of population mean and average effect (N = N11 + N12 + N22) 

Genotype A1A1 A1A2 A2A2 

Number of individual  N11 N12 N22 

Genotypic frequency: general expression P11 = N11/N  P12 = N12/N P22 = N22/N 

Genotypic frequency: under HWE p² 2pq q² 

Number of A1 2 1 0 
Number of A2 0 1 2 
Genotypic value g11 g12 g22 

 
 Let μ = the common mean of all genotypic values = p²g11 + 2pqg12 + q²g22, μi = the 
average genotypic value for all genotypes carrying Ai allele, i =1,2, with μ1 = pg11 + qg12 
and μ2 = pg12 + qg22. Then, 
 
 a1 = average effect of A1 allele = μ1 − μ = qα 
 a2 = average effect of A2 allele = μ2 − μ = −pα 
 
where 
 
 α  = the average effect of gene substitution  
  = a1 − a2 = μ1 − μ2 = p(g11) + (q − p)g12 −qg22.  
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The partition of a genotypic value into breeding value and dominance deviation based on 
Table A1.1 has the same results as in [1] and are summarized in Table A1.2. 
 
Table A1.2 Breeding value and dominance deviation 
Genotype A1A1 A1A2 A2A2 

Corrected 
genotypic 
value 

t11 = g11 − μ t12 = g12 − μ t22 = g22 − μ  

Breeding value a11 = 2a1 = 2qα a12 = a1+a2 = (q−p)α a22 = 2a2 = −2pα 
Dominance 
deviation 

d11 = t11 −a11 = −2q²δ d12 = t12 −a12 = 2pqδ d22 = t22 −a22 = −2p²δ 

 
 
In Table A1.2,   
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d 221112221112   = dominance effect. 

 
Based on the above results, the traditional quantitative genetics model that partitions a 
genotypic value into additive and dominance effects is:  
 
 gij = mean + (breeding value) + (dominance deviation) = μ + aij + dij   i,j = 1,2; or, 
 
 g11 = μ + (2qα) + (−2q²δ)  
 g12 = μ + [(q − p)α] + (2pqδ) 
 g22 = μ + (−2pα) + (−2p²δ) 
 
In matrix notations, the above equations lead to Equation 2 in the main text, i.e., 
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Assuming equal allele frequencies, p = q = ½, and reparameterizing μ as μ* = μ − ½δ, 
Equation 2 reduces to: 
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If μ* is further reparameterized as μ** = μ* − α = μ −½δ − α, equation (A.1) becomes: 
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Equation A.1 is the basis for the SNP coding of (-1)-0-1 for additive effect and 0-1-0 
coding for dominance effect, and Equation A.2 is the basis for the SNP coding of 0-1-2 
for additive effect and 0-1-0 coding for dominance effect. These two models are the 
reparameterized models of the original quantitative genetics model of Equation 2 under 
the assumption of equal allele frequencies. With unequal allele frequencies, the additive 
effects in the equal-frequency models of Equations A.1 and A.2 are not ‘breeding values’ 
defined in the traditional quantitative genetics model of Equation 2. 
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Part B: 
Genomic prediction of additive and dominance effects for individuals without 

phenotypic observations 
 
 For m>q, where the additive and dominance relationship matrices are invertible, two 
methods of Henderson [2] for animals without records can be used for calculating 
GBLUP of individuals without phenotypic observations. The first method is to augment 
the MME for individuals with phenotypic observation by adding individuals without 
phenotypic observations to GBLUP-CE of Equations 12-13, adding a column vector of 
0's to the y vector, and adding a submatrix of 0's to each of the X and Z matrices 
corresponding to individuals without phenotypic observations. The advantage of this 
approach is that no new formulations are required for GBLUP and reliability of 
individuals without phenotypic observations because GBLUP and reliability can be 
calculated from the same GBLUP-CE. The disadvantage is the increased number of 
equations in GBLUP-CE for simultaneous solutions.  

The second method for m>q is to predict animals without observations based on 
animals with observations. With the addition of SNP markers for individuals without 
phenotypic records, the gA  and gD  matrices of Equations 6-7 can be partitioned as: 
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where 11A  = q×q matrix of additive correlations among individuals with phenotypic 

records, 10A  = q×q0 matrix of additive correlations between individuals with phenotypic 

observations and individuals without phenotypic observations, 00A  = q0×q0 matrix of 

additive correlations among individuals without phenotypic observations, 11D  = q×q 

matrix of dominance correlations among individuals with phenotypic observations, 10D  = 

q×q0 matrix of dominance correlations between individuals with and without phenotypic 
observations, 00D  = q0×q0 matrix of dominance correlations among individuals without 

phenotypic observations, and where q0 = number of animals without observations. Then, 
the GBLUP-CE of individuals without phenotypic observations can be obtained as: 
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where 0â = genomic estimated breeding value vector for individuals without phenotypic 

observations, 0d̂ = genomic estimated dominance deviation vector for individuals 

without phenotypic observations, â  and d̂  are from GBLUP-CE of Equations 12-13, and 
P is defined by Equation 14. Reliabilities of Equations B.1-B.3 are:  
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For q>m, GBLUP-QM of individuals without phenotypic observations can be obtained as: 
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where 0T  and 0T  are given by Equations 4-5 but are calculated using SNP of 

individuals without phenotypic observations, and α̂  and δ̂  are from GBLUP-QM of 
Equation 19. Note that GBLUP-QM of Equations B.4-B.6 and GBLUP-CE of Equations 
B.1-B.3 are mathematically equivalent. Reliabilities of GBLUP from Equations B.4-B.6 
are:  
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Part C: 
AI-REML implementation 

 
The general formula of AI-REML [3-5] can be written as: 
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)',,( e Δ  = the partial derivatives of the log-likelihood function (L) with respect 

to each variance component. For GREML_CE, the AI and Δ can use the formulae in [3] 
except notation changes. For GREML_QM, Δ can also use the formulae in [5] except 
notation changes. The AI matrix for GREML_QM with the absorption of fixed effects 
can be written as:  
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and where ZTZ 1  and ZTZ 2 , ')'( XXXXIM  N , H−1, Cαα, Cαδ, and Cδδ are 

defined by Equation 22, P is defined by Equation 14, and ),( 21u ZZZ  . In terms of 

computing implementation, the calculation of M, which is a large matrix not calculated 
for GREML, can be avoided, e.g., by calculating ''ˆ 1 MZ'α  as ')'('ˆ'ˆ 11 XXXXZ'αZ'α  . 
Other terms in the AI matrix can be calculated in the same way to avoid the need to store 
M. 
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Part D: 
Simulation study to evaluate GREML and GBLUP accuracies 

 
Simulated values of quantitative trait loci (QTL) and phenotypes were generated to 

evaluate the performance of GBLUP and GREML for additive and dominance effects 
within the training data set. The central question to be answered by the simulation study 
was the accuracies of GREML and GBLUP for causal variants, SNP markers with 
various marker densities, and various heritability levels. For this purpose, individuals 
with SNP markers and known breeding values and dominance deviations (individuals in 
simulated training data set), rather than individuals in the validation data set, were the 
appropriate choice. The SNP data with 45,878 markers for 1654 Holstein cows [6,7] were 
used to base the data simulation on a real SNP structure. Minor allele frequency of 0.05 
was required and 40,544 markers covering all 29 autosomes and the X chromosome 
satisfied this condition in the final SNP data set. The 40,544 markers were divided into 
1000 segments in equal distance and 1006 bordering markers of the 1000 segments were 
selected as QTL with an average QTL spacing approximately 2.64 Mb. The QTL 
genotypic values were generated with a mixture of additive and dominance effects in the 
order of ‘A-D-A-D-A-D...’ for each chromosome, where ‘A’ and ‘D’ denote additive and 
dominance effects, respectively. True QTL values were generated using Equation 2 by 
setting μ = δ = 0 and using α values from a uniform [-1,1] distribution for generating 
breeding values of the markers, and by setting μ = α = 0 and using δ values from a 
uniform [-1,1] distribution for generating dominance deviations. The resulting breeding 
values and dominance deviations had normal distributions, see Figure below. 

 

 
Figure D.1 Distribution of breeding values and dominance deviations assuming 
uniform distribution of α and δ values. Left: breeding values. Right: dominance 
deviations. 

 
Random residuals were generated as a standardized normal variable, i.e., e~N(0,1). 

The total additive value and the total dominance value each was scaled to achieve a target 
heritability level. Let 0 is the original additive value as the summation of the additive 
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values of all QTL, with variance of 2
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observations were generated as eQTLy   for true 2
h  and 2

h  levels of 0.05, 0.15 and 

0.30. This range of true heritability levels translates into approximately 0.00005-0.0003 
of the phenotypic variation for each of the 1006 QTL. These small SNP effects would be 
undetectable through genome-wide association analysis. Seven marker sets were studied 
for the following purposes: the 1K_QTL set for studying the accuracies of causal variants, 
the 1K_SNP set for studying the accuracies of inter-QTL markers that were 
approximately in equal numbers as in the 1K_QTL set, the 2K and 41K for studying the 
accuracy changes by adding inter-QTL markers with different densities to the causal 
variants, and the 3K, 7K and 40K inter-QTL markers for studying the accuracies of 
linked markers with different densities. These marker sets are summarized in the table 
below.  
 
Table D.1. SNP marker sets used in the simulation study 

SNP set Number of SNP markers Average spacing (kb) Type of SNP markers
1K_QTL 1006 2641 Causal SNP 
1K_SNP 975 2725 Inter-QTL SNP 
2K 1981 (=1006 + 975) 1341 1K_QTL + 1K_SNP 
3K 3000 886 Inter-QTL SNP 
7K 7000 380 Inter-QTL SNP 
40K 39,538 67 Inter-QTL SNP 
41K 40,544 66 40K + 1K_QTL 
 

GREML estimates of additive, dominance and residual variances, as well as additive 
and dominance heritabilities, were obtained using the GVCBLUP computer package that 
implemented methods in this study [8]. GBLUP of additive and dominance effects were 
obtained as the solutions at the last iteration of GREML. Accuracy of GREML for 
variance components and heritabilities was measured by bias, the mean square error 
(MSE), relative bias and relative MSE, where  
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value)(trueestimates)of(meanbias   

estimates)of(variance(bias)MSE 2   

value)bias/(truebias)(relative    

)value/(trueMSEMSE)(relative  .  
 
Each predicted GBLUP accuracy was calculated as the square root of the reliability 
measure developed in this study, and observed GBLUP accuracy was calculated as the 
correlation between the GBLUP and the true breeding values, dominance deviations or 
genetic values. 

To investigate dominance GBLUP accuracy for phenotypes with heterosis, we 
generated simulation data set assuming positive dominance deviation for each 
heterozygous genotype and negative dominance deviation for each homozygous genotype 
by setting the ‘δ’ value to ‘1’ in Equation 2. The resulting simulation data had a skewed 
distribution with mean of ‘-0.3’ due to the fact that the Holstein population used in the 
simulation study had more homozygous genotypes than heterozygous genotypes, see 
figure below. 

 
 

   
 

Figure D.2 Distribution of simulated data assuming random additive effects and 
directional dominance effects. Left: Distribution of breeding values. Right: Distribution 
of dominance deviations.  
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