
Numerical Parameters

Structure
Stiffness Coefficient Damping Coefficient
×e−1mm−1z N/mm2 ×10−7e−0.5mm−1z N-s/mm2

BM 0.71 0.7
TM 0.43 5.7
OC 0.11 1.4
Gap 0.003 1.4

Table S1: Viscoelastic Parameters

Heights (µm) Other
BM 23 L = 7 mm
TM 30 W (z) = 1e0.1mm−1z mm
RL 23 θ = 10◦

SV & ST 350 ls = 0.1 nm
FA = 2.8×10−8 N/mm

Table S2: Structural Dimensions
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Additional figures

The tables associated with the figures in this section demonstrate selectivity (Q)

and sensitivity (maximum velocity) changes with varying model parameters. Top

figures show velocity and bottom the phase difference between shear and BM

vibrations. All calculations are made at z = 1.4 mm and damping and stiffness are

given in cgs units per length dynes/cm2 and dynes-s/cm2.
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Model derivation

Introduction

This supplement gives a detailed derivation of the three degree of freedom model

employed in the paper “Phase of shear vibrations within the cochlear partition

leads to activation of the cochlear amplifier.” It is intended to integrate previous

work with new material, and to present details of the mathematical derivation for

the ease of the reader. Because it is intended to be complimentary to the main

text, we will avoid reiteration of definitions and subscripts presented there. There

is one departure from the notation in the main text; here we use double subscripts

to enumerate a WKB expansion and active force expansion, but in the main text

discussion of the WKB expansion is extremely abbreviated, and for clarity we

only enumerated the active force expansion.

The goal is to find a solution to the general partition equation

Γ~A(z, t) =W (z)~P(x,0,z, t)+~FA (S1)

given our specific model of the cross section and cochlear activity. It describes the

interaction of the viscoelastic partition elements (Γ), the partition displacement

(~A), the fluid pressure (~P) and the active force (~FA). We will solve Laplace’s

equation in a long, narrow tube with a single vibrating boundary by employing a

WKB expansion based on the asymmetry of the tube. This will allow us to express

the fluid pressure analytically in terms of the partition displacement. Using a

force-balance approach we then analyze the interaction of the three masses in the

partition, deriving a partition matrix.

At this point, we will be able to write the partition equation such that most

terms are linear in ~A. The active force is small compared to the inertial forces,

we will enable an additional expansion. This gives a homogeneous expression

equivalent to a passive model of the cochlea, and the active model will finally be

solved in sequence. To summarize, first we will derive an expression for the fluid

part of the model, then the partition part. Then we put them together and solve the

passive equation, and finally we calculate the active contribution as a perturbation.
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Fluid pressure with a single vibrating boundary: Laplace’s equa-
tion using WKB

The fluid problem is one of multiple scales that we will exploit with the WKB

expansion. To separate these scales, it is useful to express the dimensional co-

ordinates (depicted in Fig. 1 of the main text) as the normalized, dimensionless

quantities x∗ = x/W (0),y∗ = y/W (0) and z∗ = z/L where W (0) and L, represent

short and long dimensions of the cochlea. We also normalize the wavenumber

k∗(z) =W (0)k(z).

These normalizations give rise to the small expansion parameter ε =W (0)/L.

P, A and Φ take the form ~A(z,ω) = (~A0(z∗,ω)+ ε~A1(z∗,ω)+ . . .) = (~A0(z∗)+

ε~A1(z∗)+ . . .)eiφ∗(k∗(z∗),ω) where φ∗(k∗(z∗),ω) = ωt−1/ε
∫ z∗

0 k∗(η)dη .

To solve for the pressure we start by writing Laplace’s equation for Φ

0 = ∇
2
Φ(x,y,z, t). (S2)

Substituting the normalizations from above and multiplying by W 2(0), using T to

indicate derivatives in the transverse dimensions x∗ and y∗, we have

0 =

(
∇

2
T + ε

2 ∂ 2

∂ z∗2

)(
Φ0(x∗,y∗,z∗)eiφ∗(k∗(z∗),ω)+ εΦ1(x∗,y∗,z∗)eiφ∗(k∗(z∗),ω)

)
+ . . .

= [∇2
TΦ0(x∗,y∗,z∗)+ ε∇

2
TΦ1(x∗,y∗,z∗)

−k∗2(z∗)Φ0(x∗,y∗,z∗)+ εk∗2(z∗)Φ1(x∗,y∗,z∗)

−ε
(
2ik∗Φ′0(x

∗,y∗,z∗)+ ik∗′(z∗)Φ0(x∗,y∗,z∗)
)
]

where ′ denotes a derivative in z∗. Thus the first two equations of the expansion

are

O(1) ⇒ ∇
2
TΦ0(x∗,y∗,z∗)− k∗2(z∗)Φ0(x∗,y∗,z∗) = 0 (S3)

O(ε) ⇒ ∇
2
TΦ1(x∗,y∗,z∗)− k∗2(z∗)Φ1(x∗,y∗,z∗)

= i
(
k∗(z)Φ2

0(x
∗,y∗,z∗)

)′
Φ
−1
0 (x∗,y∗,z∗) (S4)

We consider Neumann boundary conditions in the lower chamber, where vi-

brating boundary is at y∗ = 0. The fluid velocity in y∗ must be equal to the ve-

locity of the partition, thus the derivative of the potential field is related to the
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partition displacement by ∂Φ0(x∗,y∗,z∗,t)
∂y∗ |y∗=0 = ωW (0)AB0(z∗, t) for O(1) and sim-

ilar for O(ε). The other walls are hard, meaning ∂Φ(x∗,y∗,z∗,t)
∂nT

= 0, and since the

height of the chamber is constant, ∂Φ(x∗,y∗,z∗,t)
∂y∗ |y∗=−H/W (0) = 0 exactly. However,

the tapered sidewalls are not quite perpendicular to x∗. To find the boundary

conditions we must explicitly define the normal derivative for the wall function

F = 1/(W (0))(x∗− .5W (z∗)). These boundary conditions are

∂Φ0(x∗,y∗,z∗, t)
∂x∗

= 0

∂Φ1(x∗,y∗,z∗, t)
∂x∗

= ∓ik∗(z∗)
W ′(z∗)
2W (0)

Φ0(x∗,y∗,z∗, t)

at x∗=± W (z)
2W (0) .

While the normalized coordinates are extremely useful for deriving these equa-

tions, it can be tedious to continue with them for the entire calculation. We return

to regular coordinates by multiplying Eq. S4 and Eq. S3 by 1/W 2(0), the bound-

ary conditions by 1/W (0), and noting that 1/ε
∫ z∗

0 k∗(η)dη =
∫ z

0 k(η)dη .

To solve the unnormalized Eq. S3 in the lower fluid compartment we see that

no x dependence is needed to meet the boundary conditions. We then recognize

that the - in front of the k2 term instructs us to look for hyperbolic solutions in

y, and to get 0 on the boundary at −H we need a solution of the form Φ0(y,z) =

C cosh(k(z)(y+H)). Applying boundary condition at y = 0 and solving for C

gives us

Φ0(y,z, t) = iω
cosh[k(z)(y+H)]

k(z)sinhHk(z)
AB0(z, t). (S5)

To find Φ1(0,z) in terms of A0(z) and A1(z), use the O(ε) equations with

Green’s formula on the cross section of the cochlea.∫∫
A

(Φ0(y,z)∇2
TΦ1(y,z)−Φ1(y,z)∇2

TΦ0(y,z))dA

=
∮ (

Φ0(y,z)
∂Φ1(y,z)

∂nT
−Φ1(y,z)

∂Φ0(y,z)
∂nT

)
dS (S6)

The integral over x on the LHS simply multiplies the expression by W (z). Sub-

stitute Eq. S3 and Eq. S4 for terms on the LHS. On the RHS we make use of
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the boundary conditions in to write down the terms, and then use Leibniz’s rule to

combine them.

i
LW (z)
W (0)

∫ 0

−H
(k(z)Φ2

0(y,z))
′ dy = −iωW (z)Φ0(0,z)AB1(z)

−i
LW ′(z)
W (0)

∫ 0

−H
k(z)Φ2

0(y,z)dy

+iωW (z)Φ1(0,z)AB0(z)[LW (z)
W (0)

∫ 0

−H
(k(z)Φ2

0(y,z))dy
]′

= −ωW (z)Φ0(0,z)AB1(z)

+ωW (z)Φ1(0,z)AB0(z)

Finally we arrive at

Φ1(0,z) =
L

ωW (0)W (z)AB0(z)

[
W (z)

∫ 0

−H
(k(z)Φ2

0(y,z))dy
]′
+Φ0(0,z)

AB1(z)
AB0(z)

The integral evaluates to∫ 0

−H(z)
(k(z)Φ2

B0(y,z))dy =−ω
2 2Hk(z)+ sinh(2Hk(z))

4k2(z)sinh2(Hk)
A2

B0(y,z). (S7)

and for compactness we write

G(z) =W (z)
2Hk(z)+ sinh(2Hk(z))

4k2(z)sinh2(Hk(z))
. (S8)

The well known relation P = −ρ∂tΦ then gives an expression for P propor-

tional to ω2. Thus the pressure force can be thought of as the effective fluid mass,

m f , defined in Eq. 5 in the main text.

Using Eq. S5 we can now express P as

PT0(0,z) =
ω2m f AB0(z)

W (z)
(S9)

PT1(0,z) =
ω2m f AB1(z)

W (z)
+

−iρL
W (0)W (z)AB0(z)

[
W (z)G(z)A2

B0(z)
]′
. (S10)

The expressions for the pressure in the SV can be similarly derived, and is differ-

ent from this by a sign change and replacing AB0 with AS0 sinθ +AR0.
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PV
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VTM

Θ

RL BM

Partition Force Balance

To generate the partition matrix representing the internal mass, damping and elas-

ticity of the cochlear partition, we begin by balancing the forces shown in section .

A number of assumptions are involved in writing down the force balance equa-

tions as follows.

Time dependence is of the form eiωt , and thus the forces due to mass accel-

eration and damping are the −ω2 and iω times the displacement, respectively, so

the viscoelastic terms are Vx = iωDx +Sx where x is a subscript defined in Fig. 1

in the main text. The gap width between the RL and TM is constant due to thin

film adhesion. To account for this we depict a force, Fg, which is applied equal

and opposite on the TM and RL normal to the surface. FA is the active force. The

fluid pressure acts entirely in the y direction on the TM and BM. Subscripts for

the pressure (Px) are V and T for SV and ST, respectively.

Since the TM is the only mass that has any net motion in the x direction, we

write four force balance equations, one for the TM in the x direction and the other

three for the TM, RL, and BM in the y direction.

−ω
2MTAS cosθ = −Fg sinθ −VTMAS cosθ −VGapAS cosθ (S11)

−ω
2MT(AS sinθ +AT) = −W (z)PV(0,z)+Fg cosθ

−VTM(AS sinθ +AT)−VGapAS sinθ (S12)

−ω
2MRAT = −Fg cosθ +VGapAS sinθ

−VOC(AT−AB)−FA (S13)

−ω
2MBAB = W (z)PT(0,z)+VOC(AT−AB)

−VBMAB +FA (S14)
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These equation are not linearly independent. We can reduce by one equation and

one unknown by solving Eq. S12 for Fg and substituting into Eq. S11. Grouping

the passive, internal partition forces on one side of the equation we have

−ω
2MT(AS +AT sinθ)+(VT +VG)AS +VTAT sinθ =−W (z)PV(0,z)sinθ .

(S15)

Also by eliminating Fg in Eq. S13 we have

−ω
2MTAS sinθ −ω

2(MR +MT)AT +VT(AS sinθ +AT)−VO(AT−AB)

=−W (z)PV(0,z)−FA. (S16)

Equations (S14-S16) lead to Eqs. (2) and (3) and the definition of the fluid coeffi-

cient matrix M f in the main text.

Active Force Expansion

In the previous section we derived the matrix for Γ = −ω2M+V We also have

expressions for P in both compartments, and Eqs. (S14 - S16) give us the appro-

priate vector representation. Using the first order WKB terms, rewrite Eq. S1

as

(Γ−ω
2m f M f )~A0(z, t) = ~FA (S17)

where the active force ~FA = fAΨ(AS00(z))[0,−1,1]T is described in the main text.

As with the previous expansion, we want to emphasize the different scales

of the problem through normalization. To do so we define Γ∗ = Γ/(ω2MB(0))

and m∗f = m f /MB(0). We also write ~A∗0(z, t) = ~A0(z, t)/ls where ls is a char-

acteristic saturation length defined by .99 = ψ(ls). The expansion term δ =

fa/(ω
2MB(0)ls) is created by dividing by the denominator. We expand ~A(z, t)

and k(z, t) as

~A∗0(z, t) = ~A∗00(z, t)+δ ~A∗01(z, t) . . . (S18)

k = k0 +δk1 . . . (S19)
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In order to identify the O(1) equation, we need to use the expansions

1
k0 +δk1

=
1
k0
−δ

k1

k2
0
+ . . .

coth(k0 +δk1) = cothk0 +δ (k1− k1 coth2 k0)

We replace k(z) with k0(z) in m f and introduce the expansion coefficient

p f =
1

coth(Hk0)
− coth(Hk0)−

1
Hk0

The O(1) and O(δ ) equations are therefore(
Γ∗−m∗f Mf

)
~A∗00(z) = 0 (S20)(

Γ∗−m∗f M f
)
~A∗01(z) = m∗f p f Hk1M f~A∗00(z)

+Ψ(AS00(z)) (S21)

The unnormalized versions are Eqs. 9 and 10 in the main text.

Passive Solutions

To find k0 we multiply Eq. S20 by ω2MB(0)ls and write the eigenvalue problem

Γ~A00(z, t) = ω
2m f M f~A00(z, t) (S22)

We solve this problem computationally to find the eigenvalues m f and eigenvec-

tors. As discussed in the main body of the paper, there are two solutions. Most of

the solution is can be worked for each mode independently, so we employ distin-

guishing superscripts only for equations that involve both. The expression for m f

gives an infinite number of values for k0, but only one wavenumber will meet the

requirements of a forward propagating wave (positive real part and any imaginary

part being negative and of much smaller absolute value.)

We can write each eigenvector using the notation

~A00(z) = γ0(z)

α(z)
β (z)

1

=

AS00(z)
AT00(z)

AB00

 (S23)

11



The solution to the eigenvalue problem provides α(z) and β (z), but to find γ0(z)

we must consider the higher order expressions of the WKB expansion.

[Γ−ω
2m f M f ] ~A10(z)

= iρω
2


− sinθ

AS00(z)sinθ+AR00(z)
[G(AS00(z)sinθ +AR00(z))2]′

− 1
AS00(z)sinθ+AR00(z)

[G(AS00(z)sinθ +AR00(z))2]′

− 1
AB00(z)

[GA2
B00(z)]

′

 . (S24)

We can see the homogeneous equation is Eq. S22, so the determinant of (Γ−
ω2m f M f ) must be 0. Such an equation must satisfy specific requirements to be

solved. If the RHS of the equation is abbreviated ~F0 the solvability condition is

~F0 · ~̄η0 = 0 (S25)

where ~η0 is the eigenvector of the adjoint matrix (Γ−m f M f )
†. Due to the sym-

metry of the matrix, ~̄η0 = ~A00. Substituting ~A00 using the notation in Eq. S23 into

Eq. Eq. S25 and integrating we get

[(α(z)sinθ +β (z))2 +1]γ2(z)G(z) =C (S26)

where C is the energy for each mode, which is constant in z.

Once the fluid pressure, is determined at z = 0 the equations above can be used

to fully solve the passive problem. To do this we make use of both modes of the

problem. Incompressibility dictates the integral of longitudinal fluid flows, V (y,z)

of both compartments is 0 at z = 0. Furthermore, V (y,z) = kP(y,z). Thus

0 =
∫ H

0

(
kT(z)PT

V(y,0)+ kB(z)PB
V (y,0)

)
dy∫ 0

−H

(
kT(z)PT

V(y,0)+ kB(z)PB
V (y,0)

)
dy

= γ
T(0)

αT(0)sinθ +β T(0)
kT(0)

+ γ
B(0)

αB(0)sinθ +β B(0)
kB(0)

−γ
T(0)

1
kT(0)

− γ
B(0)

1
kB(0)

γT(0)
γB(0)

= −kT(0)
kB(0)

(
αB(0)sinθ +β B(0)−1
αT(0)sinθ +β T(0)−1

)
(S27)
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From this we get the relation between γT(0) and γB(0). From here we use the

stapes pressure to determine the values.

Ps =
1
H

∫ H

0

(
PT

V0(1)(y,0)+PB
V0(y,0)

)
dy

=
−ω2ρ

H

(
αT(0)sinθ +β T(0)

(kT(0))2 γ
T
0 (0)+

(αB(0)sinθ +β B(0))
(kB(0))2 γ

B
0 (0)

)
=
−ω2ρ

H

[(αT(0)sinθ +β T(0))
(kT(0))2

−(αB(0)sinθ +β B(0))(αT(0)sinθ +β T(0)−1)
(αB(0)sinθ +β B(0)−1)kT(0)kB

]
γ

T
0 (0)

γ
T
0 (0) =

−PsHkT(0)(αB(0)sinθ +β B(0)−1)
ω2ρ

×
[(αT(0)sinθ +β T)(αB(0)sinθ +β B(0)−1)

kT(0)

−(αB(0)sinθ +β B)(αT(0)sinθ +β T(0)−1)
kB(0)

]−1
(S28)

A similar expression with the modes switched gives γB
0 (0).

Perturbed Equation Solutions

Calculating k1 involves using the same solvability condition we applied above.

The orthogonality relation for this problem is

~A00(z, t) ·
[
ω

2m f p f Hk1M f~A00(z, t)+ω
2MB(0)ls~FA

]
= 0. (S29)

Solving for k1

0 = m f p f Hk1
[
sin2

θAS00(z, t)+ sinθAT00(z, t)
]

AS00(z, t)

+m f p f Hk1 [sinθAS00(z, t)+AT00(z, t)]AT00−MB(0)lsΨ(z, t)AT00(z, t)

+m f p f Hk1 [AT00(z, t)]
2 +MB(0)lsΨ(z, t)AB00(z, t)

0 = m f p f Hk1γ0(z)[α2(z)sin2
θ +2sinθα(z)β (z)+β

2(z)+1]

+MB(0)Ψ(z)ls(β (z)−1)

k1 =
MB(0)lsΨ(z)(1−β (z))

m f p f Hγ0(z) [(α(z)sinθ +β (z))2 +1]
(S30)
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We use Eq. S30 to find k1 separately for each mode by substituting one

eigenvalue m f (and using the propagating value of k0 to determine p f . Once the

solvability condition has been met, the solution ~A10(z, t) to a problem like this

where the determinant of the LHS is equal to 0 is made of the homogeneous

solution plus a particular solution. We know the homogeneous solution from the

unperturbed problem (though we don’t necessarily know how it is normalized).

When the homogeneous problem is an eigenvalue problem such as this, the

particular solution to the nonhomogeneous problem will be a linear combination

of the eigenvectors NOT corresponding to the eigenvalue currently used. In this

case there is only one alternate eigenvector. To determine the appropriate coeffi-

cient, which we will denote as γ1, we need to find another boundary condition or

make an assumption. In this case, we assume the homogeneous solution makes 0

contribution to the active all of the action is contained in the passive solution.

Using subscripts to denote the elements of Γ, using the first equation in the

system Eq. S21 and substituting Eq. S30 we have

γ
T
1
[
α

B(z)
(
Γ11−ω

2mT
f sin2

θ
)
+β

B(z)
(
Γ12−ω

2mT
f sinθ

)
+Γ13

]
=

MB(0)lsΨT(z)(1−β T(z))
mT

f pT
f HγT

0 (z) [(α
T(z)sinθ +β T(z))2 +1]

×mT
f pT

f Hγ
T
0 (z)(α

T(z)sin2
θ +β

T sinθ)

γ
T
1 (z) = Ψ

T(z)
MB(0)ls(1−β T(z))(αT(z)sin2

θ +β T(z)sinθ)

(αT sinθ +β T)2 +1
×[αB

Γ
T
11 +β

B
Γ

T
12 +Γ

T
13

−ω
2mT

f (α
B(z)sin2

θ +β
B(z)sinθ)]−1 (S31)

Using both modes, we have equations for all the quantities needed to calculate the
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full partition displacements

~A(z, t) =

γ
T
0

αT

β T

1

+δγ
T
1

αB

β B

1


ei(ωt−

∫ z
0 (k

T
0 (η)+δkT

1 (η))dη

+

γ
B
0

αB

β B

1

+δγ
B
1

αT

β T

1


ei(ωt−

∫ z
0 (k

B
0 (η)+δkB

1 (η))dη . (S32)
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