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Abstract

This report describes the suicidality prediction models created under the DARPA
DCAPS program. The models were built primarily from unstructured text (free-
format clinician notes) for several hundred patient records obtained from the Vet-
erans Health Administration (VHA). The models were constructed using a ge-
netic programming algorithm applied to bag-of-words and bag-of-phrases datasets.
The influence of additional structured data was explored but was found to be mi-
nor. Given the small dataset size, classification between cohorts was high fidelity
(98%). Cross-validation suggests these models are reasonably predictive, with an
accuracy of 50% to 69% on five rotating folds, with ensemble averages of 58% to
67%. One particularly noteworthy result is that word-pairs can dramatically im-
prove classification accuracy; but this is the case only when one of the words in
the pair is already known to have a high predictive value. By contrast, the set of all
possible word-pairs does not improve on a simple bag-of-words model.

Introduction
A central goal of the Durkheim project is to build a classifier for suicide ideation and
prediction of suicide risk, based on free-text clinician notes contained in a set medical
records obtained from the Veterans Health Administration (VHA), via the Dartmouth-
Hitchcock Medical Center (DHMC). The intended use of the classifier is to aid the
clinician in determining the suicide risk of prospective patients. As such, it should
be able to digest patient data, and assign a risk level, green/yellow/red, suggesting the
likelihood of suicidal ideation.

In order to understand how to build such a classifier, an extensive analysis of med-
ical records of VHA patients were performed. Patient records were divided into three
cohorts. These consist of a control group of 70 patients (group 1), a suicide cohort of
69 patients (group 2), and a psychiatric cohort of 70 patients (group 3). The medical
records consist primarily of free-text notes entered by the clinician, as well as ad-
ditional structured data (demographics, drug prescriptions, hospitalization admission
records). The inclusion of the structured data in the training set makes for a very slight
improvement of the overall score (fractions of a percent).

The clinician notes include both nurse and doctor notes, ranging from mundane
procedures ’Patient received influenza vaccine per order’, descriptions of more seri-
ous procedures: ’ultrasound of the abdominal aorta done on...’, a number of semi-
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automatic script-generated tables: ’Issue Date Status Last Fill Outpatient Medications
(By Class) Refills Expiration’, as well as psychologically charged entries: ’Little in-
terest or pleasure in doing things’. Notes that discuss psychological state, including
screenings for depression and alcoholism, appear in all three cohorts. One may pre-
sume that these are far more common, and delve deeper, in the last two cohorts. Aside
from this kind of quick, cursory review to validate the general form of the records, no
deeper review or examination was performed.

The data analysis was performed by using supervised training with a genetic pro-
gramming system to build models of the datasets. The models were constructed by
converting the free-text records into a ’bag of words’: a simple numerical count of how
often a given word appears in the context of a certain patient record. Any given model
then identifies which words, taken in combination, serve as predictors of suicide. The
nature of the genetic programming system used is that it can build many different mod-
els, depending on an initial random seed. Thus, data analysis consisted primarily of
generating ensemble averages of models trained on the same dataset. Model valida-
tion was performed by using 5-fold cross-validation: that is, by setting aside 1/5 of the
dataset for testing, and training on the remaining 4/5ths. Model accuracy was used as
the score: that is, the total fraction of correct answers.

Most of the data analysis was focused on building a binary classifier to distinguish
group 2 and 3. This was done for several reasons. One important reason was simply
that these were the two largest groups, in terms of total word-count, and thus presented
the greatest amount of data to work with. An equally important reason, though, is the
clinical perception that these two groups are hard or even impossible to distinguish. By
contrast, the control group consists of patients obtaining non-psychiatric medical care,
and thus is almost completely devoid of references to psychological state. As such,
it should be, in principle, easy to distinguish simply because it lacks this vocabulary.
Results for binary classifiers trained to distinguish groups 1 vs. 2, as well as group 1+3
vs. group 2, are also presented.

Many of the words appearing in the models are emotionally charged or psycholog-
ically significant, such as ’PTSD’, ’weapons’, or ’overdose’. Taken individually, these
words are meaningful, but not clinically out of the ordinary. Thus, a question arises:
what phrases are these words a part of? Thus, a phrase such as ’negative assessment for
PTSD’ carries a different meaning than ’positive assessment’, and is thus a potentially
useful feature for classifying suicidal patients. This suggests that a ’bag-of-phrases’
approach may be more accurate than a bag-of-words model, and this was indeed found
to be the case. In particular, models built using certain word-pairs had significantly
better scores than the single-word models, and had the best scores overall. Besides
word pairs (bi-grams), trigrams and 4-grams were also explored, but these did not offer
improvements, and it is hypothesized that the training datasets were too small to have
a noticeable effect for these. The improvement for word-pairs is seen only when an
initial selection or ’cut’ is made: a word-pair is used only if one of the words in the
pair already correlates well with the cohort. Without this cut, using word-pairs does
not improve the score, and in fact lowers it: it is easier to over-train in such a case.

For single-word bag-of-word models, the accuracy, averaged over 100 models, was
typically seen to be about 58% (depending on which cohorts were being distinguished),
with low and high scores for individual models ranging from 46% (worse than ran-
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dom chance) to over 65%. For selectively-chosen word-pairs, individual model scores
ranged from 52% to 69%, with an ensemble average (for 100 models) of 67%. To the
authors, this appears to be a remarkable achievement, given the small size of the dataset
and the fragmentary nature of clinician notes.

The remainder of this document is structured to provide a mode detailed review of
the model building and validation process, the size and content of the clinician notes,
and the various results obtained.

Model Building and Validation
Model building consists of several stages. The initial stage converts the free-text data
into a “bag of words”. This is simply a count of word frequency, and nothing more: a
count of how often some given word was used in a particular patient’s medical report.
Bag-of-words models completely ignore any sort of linguistic structure in the original
text, as well as ignoring punctuation and any structural markup (paragraphs, sentence
endings, etc.). Typically, 30 to 40 thousand different words were found, depending
on which cohort is examined. These words were not spell-checked nor stemmed, and
include many typographical errors as well as a large number of abbreviations for hos-
pitals, clinics, departments, tests, procedures, and orders.

The next stage consists of ’feature selection’. Rather than training the discrimina-
tor directly on the full set of word counts, the set is reduced to the several thousand
words judged to be most significant in predicting outcome. The cut may be done in
several ways. One possible cut is to remove words that occur less than a few dozen
times. Although the intent of this cut is to remove noise from the data, it is possible
that perhaps some significant indicators are lost as well; thus data analysis includes
experiments adjusting this cut. Another possible cut is to only count word stems: that
is, to consolidate the counts for singular and plural forms of a noun, and to consolidate
past, present and future tenses of verbs. The most important cut is to choose only those
words whose counts correlate well with the patient grouping. This is done by comput-
ing the ’mutual information’ (MI) between the group id (1, 2 or 3) and the word-count
frequency. The few thousand words with the highest MI are then selected to be used
for the final model-building stage.

Feature selection is an important step of model building, and has a counter-intuitive
effect on the final model: it is often the case that limiting the number of features used
to build the model results in a better, more accurate model. This is because machine-
learning algorithms can often focus in on irrelevant differences when classifying into
groups: the differences are irrelevant, in that they fail to have predictive value. The
greater the number of features (words) given to such a learning algorithm, the more
likely it is to find such irrelevant differences; limiting the input to only the most signif-
icant features helps prevent such over-training.

Model building was performed using the poses/moses machine learning system[4,
3]. This system builds candidate representative models or ’representations’ of the data,
and then uses evolutionary algorithms to discover the most effective representation. An
example of such a representation, one of many, trained on the current data, is shown in
Table 1.
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Table 1: Example Representation

or(and(or(and($MODERATE_t1.3 !$PRESCRIBE_t0.02)
$CONCERN_t0.8 $EVIDENCE_t0.4 $INCREASING_t0.3
$RESTRICTED_t0.1) or($ALBUTEROL_t1.2 $AMOUNTS_t0.08
$SYSTEM_t0.08 $VIEW_t0.8) or(!$STOMACH_t0.4
!$SURROGATE_t0.7)) and(!$BRING_t0.6 !$HIGH_t1.9
!$MINUTES_t2.5 !$SAT_t0.7 $STOMACH_t0.4) $LOWEST_t0.08
$NYSTAGMUS_t0.03 $OLANZAPINE_t0.05 $OVERDOSE_t0.09
$PRESCRIBE_t0.02 $SUPERFICIAL_t0.16 $WEAPONS_t0.04
$WITHDRAWAL_t0.2)

The above is an example of a representation built from the VHA dataset. It may be
understood as follows: $MODERATE_t1.3 takes on a value of ’true’ if the word
’moderate’ occurs 1.3 or more times in the text (floating point values are used in case
word-counts have been normalized to non-integer values). The exclamation mark ! in-
dicates that the condition does not hold: so !$PRESCRIBE_t0.02 means that the
word ’prescribe’ does NOT occur 0.02 or more times. The Boolean operators ’and’,
’or’ serve to conjoin these conditions: thus the above is saying that, “if the word ’mod-
erate’ appears at least twice, and the word ’prescribe’ does not appear, or if any of the
words ’concern’, ’evidence’, ’increasing’ or ’restricted’ appear at least once, and the
word ’albuterol’ appears at least twice ... then the patient should be classified as be-
longing to group 2.” Note that, out of the approximately twenty-five thousand unique
words appearing in the data, the above is really a rather very small subset.

The final classifier consists of not just one such representation, but many, ranging
from one to over a hundred, depending on parameter settings. The predictions of each
representative is used to cast a vote; the final determination follows from a tally of
these votes. This process of ensemble averaging eliminates a considerable variation of
accuracy from one model to the next[5].

To determine the accuracy and performance of the classifier, standard k-fold cross-
validation techniques are used, with k=5. In this style of validation, the dataset is
divided into 5 parts. Four of the parts are used to train a model, and then the accuracy
of the model is measured on the fifth part. One then repeats this process, each time
leaving out a different fifth of the dataset, to be used for evaluation. The average of the
five sessions may then be given as the overall accuracy.

Almost all of the data analysis reported here was done by training the classifier to
maximize accuracy: that is, to minimize the sum of the false-positive and false-negative
rates. This is the appropriate approach when the datasets are balanced in size, as they
are here. Alternatives to maximizing the accuracy would be maximizing the F1-score or
F2-score, maximizing the recall rate, or the precision. None of these alternatives seem
particularly suited for this dataset; they can lead to unexpected, imbalanced effects.
For example, it will be seen later that it appears to be considerably easier to pick out
patients with a low suicide risk out of a mixed population, than to pick out those with a
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high risk; this is covered in a later section. However, for a general population wherethe
suicide risk is very low, such ideas would need to be re-examined.

The remained of this document expands on each of the steps above in greater detail,
describing feature selection, model building, and the estimation of the accuracy of the
models.

Dataset statistics
The data consists of three sets of medical records:

• Group 1: The control cohort. These are the records of 70 patients who sought
medical attention, but did not require or receive any special psychiatric treatment.

• Group 2: The suicide cohort. These are the records of 69 patients that committed
suicide.

• Group 3: The psychiatric control group. These are records of 70 patients who
sought help with psychiatric issues; they have not committed suicide, but may
be at risk.

Associated with each patient is a set of note records, covering the span of one year.
Records are generated for many reasons: upon hospital or clinic intake (by nursing
staff); patient care notes (by the primary physician); examination results; lab results;
consultation notes; notes from referrals, including imaging; outpatient notes; surgery
and treatment notes; pharmacy notes; ongoing therapy notes; telephone follow-up
notes; addenda and corrections. Thus, a single patient visit on a single day can generate
from one to more than a dozen records.

The dataset is tokenized into a bag of words by converting all punctuation into
white-space, and using white-space as word separators. The exceptions were word-
phrases that included hyphens or underscores; this punctuation was simply removed to
create a single run-on word. Differences in capitalization were ignored by converting
all words to upper-case. After this normalization, the dataset was found to consist of
nearly one million words; precisely, 971,189 words total. These are distributed across
the three groups as follows:

• Group 1: 155,354 words, or 2,219 words per patient.

• Group 2: 350,435 words, or 5,079 words per patient.

• Group 3: 465,400 words, or 6,648 words per patient.

The number of words per record is fairly uniform across all three cohorts. Record
lengths were limited to 1024 characters per record; it is clear that some of the longer
records were truncated mid-sentence, mid-word. This appears to be due to technical
interoperability difficulties with the VA data processing systems.

• Group 1: 1,913 records, or 27 records per patient, 81 words per record.

• Group 2: 4,243 records, or 61 records per patient, 82 words per record.
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• Group 3: 5,388 records, or 77 records per patient, 86 words per record.

There were 24,860 unique words in the dataset that occurred at least once, but only
14,728 that occurred twice or more. A rough sketch of the distribution is given in
table 2. Many of the words that appear only once are typos and miss-spellings of com-
mon words, abbreviations of medical terms, and a fair number of acronyms, including
abbreviated names of clinics and hospital departments, lab procedures, orders and pre-
scriptions. However, there are also many non-misspelled words that appear only once
in the text, such as: ABANDONMENT ABORTIVE ABORTED ABUSER ABUSES
ABYSS ACADEMY ACCUSE ACHIEVABLE ACHIEVES ACQUAINTED. Note
that many of these words are emotionally meaningful words. Whether these infrequently-
used can serve as indicators of psychological state is unclear. Experiments where low-
frequency words are removed from the dataset before model building are reported be-
low. At any rate, it is clear that the ’active vocabulary’ of frequently used words is
fairly small.

There was no attempt made to extract word stems, nor to correct or exclude ’obvi-
ous’ miss-spellings. Whether doing so would enhance or diminish the ability to catego-
rize is not clear a priori. No inclusion or exclusion criteria based on vocabulary were
applied. Many different cuts, based on word-counts and mutual information, were ex-
plored, as detailed below. A feature selection stage applied prior to model building
also effectively removes the majority of words from further consideration, but this cut
is based purely on the predictive utility of a word, and not on its morphology, spelling,
lexical meaning or usage.

Table 2: Word Distribution

Count Number of occurrences
24861 once or more
14728 2 times or more
11613 3 or more
9928 4 or more
8844 5 or more
6862 8 or more
4618 16 or more
3042 32 or more
1928 64 or more

Dataset word distribution.

The most frequently occurring words are shown in table 3. Function words (the so-
called ’stop’ words) were not removed from the dataset, and thus appear in this table.
There is a good reason for this: function words are known to be strong indicators of
psychological state, and, in particular, the writing of suicides is known to make greater
use of function words and pronouns than average[6, 1].

6



Table 3: Most Frequent Words

Word log2 probability
TO -5.191

AND -5.542
THE -5.568
OF -5.755

FOR -6.124
PATIENT -6.151

HE -6.418

The probability of a word is obtained by taking the number of times the word occurs,
and dividing by the total word count. Here, log2 denotes the logarithm base-2. Thus,
“to” occurs 26,588 times, or 0.027 = 2−5.191 fraction of the time.

The overall word distribution appears to obey the Zipf-Mandelbrot law (modified
Zipf law), with a quadratic fall-off tail. This is more curved, and with a more quickly
falling tail, than is commonly the case for natural-language texts. The distribution is
shown in fig 1.

Word-pairs were also explored, as these have a predictive power as well. Word
pairs were constructed by considering adjacent words, as well as pairs one word apart
(ignoring the word in the middle). Thus, for example: "big red balloon" generates
three word pairs: "big_red", "red_balloon" and “big_balloon”. The first of these pairs
is not particularly meaningful, but both of the last two are semantic units. The last,
“big_balloon”, would not have been captured if one confined oneself only to adjacent
words. By eliding middle words such semantically significant pairs can be discovered.

Not all word pairs are equally interesting. Semantically meaningful word pairs are
those with a high mutual information between them. Mutual information (MI) for a
pair of words x,y is defined as

MI(x,y) =− log2
p(x,y)

p(x,∗)p(∗,y)

Here, p(x,y) is the probability of seeing the word pair x,y, divided by the total number
of word pairs. The two probabilities p(x,∗) and p(∗,y) are the probabilities of seeing
any word pair, whose first word is x, or last word is y, respectively. In general, MI scores
typically range from slightly above 20 to less than zero; the same is true of this dataset.
In general, word pairs with a high MI form lexical units, conveying meaning, that is,
having semantic content. They are collocations, often forming idioms and set phrases.
Examples of word pairs with an MI of about 20, taken from this dataset, include ULTE-
RIOR_MOTIVES, HLTHY_LVNG, VOCALIZES_INTELLIGIBELY, GIN_TONICS,
ROAST_BEEF, MARATHON_RUNNER, GOVERNMENTAL_ENTITIES. By con-
trast, lower MI scores are less meaningful. Typically, the boundary between mean-
ingful and meaningless word pairs occurs around an MI of 2 to 4. Examples of
MI of 4 from this dataset include: HUNGRY_HAD, HAD_SWEAT, INTERACT_IN,
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Figure 1: Word Rank Distribution
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Word rank distribution for the dataset. The ’normalized word count’ is the frequency
with which a word appears in the dataset. The ’rank’ is order of a word, when sorted
by frequency. The green line indicates the Zipf-Mandelbrot law, here given as 0.16×
(rank + 7)−1. The blue line is a quadratic fit, given by 360× (rank)−2. The word
distribution for most English-language texts (books, newspapers) is much flatter than
that shown here. When word-pairs are incorporated into this ranking the curve also
flattens and becomes less steep.
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RX_IBUPROFEN, ANYTHING_HIMSELF. Those with an MI below zero degenerate
into random nonsense: MORPHINE_YOU, RECOVERY_ARE, HIS_HOW, YES_WITH:
pairs of words that appear next to one-another purely by coincidence, and not due to
any linguistic construction. Thus, the mutual information can be used as a cut, to ex-
clude low-MI word pairs from consideration during model building.

Results from models built from a variety of different MI cuts are presented below.
Word pairs can be ranked along with individual words; the overall shape of the distri-
bution does not change much; it is similar to that shown in figure 1, but considerably
flatter, loosing the quadratic fall-off for low frequency words.

Model Building and Validation Details
The various stages of feature selection, model building and validation are each in them-
selves rather complex, and require some care to perform properly. None of the stages
are ’pre-determined’ or ’automatic’; instead, each has adjustable parameters and re-
quires a deliberate choice of these parameters and overall configuration. Since the
accuracy of the final classifiers depends on the various parameters settings in the data
processing stages, it is important to understand what these are and how they are ap-
plied. The sections immediately below provide details describing these stages. This is
followed by a presentation of the results obtained as these stages are applied.

Binning
Prior to performing training on the dataset, bin-counts are created. Binning helps to
make up for relatively sparse data by lumping together similar word-counts into the
same category or ’bin’. This serves to further simplify the data and boost the perfor-
mance of the training step. It is performed by counting how often a word occurs for a
given patient, and assigning it to a bin, such as ’occurs more than twice, but less than
four times’. For a fixed set of bins, different patient records will be seen to contain
different numbers of words in them.

A set of natural bin sizes can be obtained by first determining the probability distri-
bution of a given word (over all patients); that is, by determining the average number of
times it occurs (across all patients), and the standard deviation about this average (as it
varies from patient to patient). These two numbers provide a natural size for a bin. For
example, given an average number of times that a word occurs in a patient record, one
may then say that, for a given patient, a given word occurs more than average, or less
than average; in this case, there are two bins total. Another possibility is to use three
bins: for a given patient, a word may occur about an average number of times (to within
one standard deviation away from this average), or well-below average (more than one
standard deviation below average), or well above average (more than one standard de-
viation above average). Bins serve to ’smooth’ and consolidate word counts and make
them more granular, to ’filter out high-frequency noise’ from the data. In general, the
less data one has, the fewer bins should be used, thus keeping the bins fairly full. Two
to five bins may be considered; it will be seen, in later sections, that two bins work best
for this dataset.
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The result of binning are Boolean-valued features. So, for example, if the term
’PTSD’ occurs an average of 2 times per patient record, a two-bin system would create
one feature for this word: (PT SD > 2) which is either true or false for a given patient
record. If, for example, the standard deviation was 1.0 for this word, a three-bin system
would include two features for this word, set at one standard deviation above and below
average; that is, (PT SD > 1) and (PT SD > 3), each of which may be true or false
for any given patient record. The values ’2’, ’1’, ’3’ shown here are referred to as
’thresholds’: they are the boundaries between the bins. Thus, specifying N thresholds
results in N+1 bins.

The number of thresholds to use is a parameter that can be specified; varying this
parameter results in models of varying accuracy. The number of thresholds used is the
same for all word counts: thus, setting thresholds=1 specifies that two bins are to be
used for all words. So, for example, given 31 thousand distinct words, a two-bin system
would create 31 thousand (true-false) features, while a three-bin system would result
in twice as many: 62 thousand Boolean-valued features. A four-bin system would
result in three times as many features, and so on. As is clear, increasing the number of
thresholds vastly increases the dimensionality of the feature space.

Feature Selection
After binning, but before building a model, the dataset, now converted into a collection
for true/false bin assignments, is run through a static feature-selection stage. This is
done to reduce the size of the dataset, from tens of thousands of features, to a few
thousand. The goal of this reduction is simply to improve the run-time and memory
usage of the model-building stage.

Given that the overall dataset consists of only a few hundred records, it may seem
reasonable that at most a few hundred features would suffice to provide predictive
value; and indeed, the final models consist of dozens of words. However, the run-
time speed of the next stage, model-building, is not strongly affected by the number of
features that it is given, and so it was deemed safer to err on the side of giving it too
many features to choose from (thousands), rather than too few (hundreds). Because of
this, a very simple and efficient feature selection algorithm suffices. The algorithm used
is to choose those features that have the highest mutual information with the desired
patient classification. The mutual information is defined in the same way as before:

MI(x,y) =− log2
p(x,y)

p(x,∗)p(∗,y)

except that here, the variable x is taken as the classification of a patient belonging to
one group or another, while the variable y is taken to denote whether a given feature
is true or false. Thus, if a certain feature is true whenever the patient belongs to group
A, we expect MI(A, true) to be large; likewise, it may anti-correlate: MI(A, f alse)
may be large. To continue with the previous example, the mutual information content
MI(“group1”, (PT SD > 2)) is computed for the word ’PTSD’. If this MI ranks in the
top few thousand, then (PT SD > 2) is accepted as a valid feature worth exploring dur-
ing the training stage. Words that occur equally often in one group as another will have
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a low MI score, and thus will not be selected. In most of the data analysis presented
below, the highest-ranked 3000 features were selected. This represents anywhere from
2% to 10% of the total number of features, depending on the number of bins chosen,
and the particular datasets examined.

There is no particularly strong reason for choosing MI, as opposed to some other
correlation measure, such as tf-idf. MI has a strong mathematical foundation rooted
in maximum entropy principles. It does not discriminate against rare words; a word
which occurs infrequently but still correlates well with the patient grouping will have a
reasonable MI score, and thus will be eminently suitable for use in a classifier. In any
case, the particular choice of a feature selection algorithm should have little impact on
model building.

Model Building
The most technically difficult and CPU intensive stage of the processing is the creation
of models of the data. This step is performed by the Meta-Optimizing Semantic Evo-
lutionary Search (MOSES) system. This system searches through a very large set of
representations, such as that shown in table 1, and locates those that most accurately fit
the training data.

The MOSES algorithm consists of two nested loops: representation-building and
genetic-algorithm search[4, 3]. The system starts by creating a program tree (in the
current usage, a tree of Boolean operators, such as that shown in table 1). The nodes
and leaves of the tree are free to vary over the full range of input variables, as well as
to vary over the Boolean operators (and, or, not). For any fixed choice of nodes and
leaves, the resulting tree may be scored against the input training data (the features) to
see how well it fits; clearly some choices will be better than others. The set of node and
leaf settings are explored using a genetic evolutionary search algorithm combining hill-
climbing and genetic cross-over. When no further improvements are found, the process
is begun again, this time with a different, and usually, a more complex program tree.
This step is again repeated until either a perfect score is reached, or set time-limits are
exceeded.

The generation of candidate program trees involves a second, ’dynamic’ feature-
selection stage. A new candidate tree is created from an older high-scoring tree, by
decorating it with additional candidate features. Rather than creating a candidate pro-
gram tree with all of the several thousand features in it, convergence can be improved
by working only with those features that add new information to those that are already
in the tree: that is, by working with those features most likely to improve the current
high-scoring tree. This is again a form of feature-selection, hereinafter referred to as
’dynamic feature selection’, as the selected features depend on the program tree as well
as the dataset, and a different set is chosen for each program tree. Training can be
effective even with a very small number of dynamically selected features: best results
are achieved with less than one hundred, and the technique is highly effective with as
little as five! Aside from improving scores, working with a smaller number of features
dramatically reduces training time.

The result of this process is a large number of representations, each of which model
the training data more or less equally well. Each representation may be used to clas-
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sify new patients (patients not in the training set); that is, to make predictions about
the value of the dependent variable (the patient classification) based on input variables
(word counts). When tested on a test set of patients held out from the training group,
it can be seen that the accuracy of these representations on the test data is considerably
variable. There is no a priori way of knowing which representation performs ’the best’
on the test data. To overcome this variability, an ensemble is created, with each repre-
sentation in the ensemble getting a vote to determine the final classification. That is,
the same inputs are presented to each representation, with each representation making
a prediction: a majority vote is then taken to determine the final classification. This
ensemble is referred to as the model, as it is effectively a distilled, compressed version
of the training data.

The theoretical validity of using the model for classification in this way is founded
on the belief that the model captures something essential about the way that words are
used in text. This is a reasonable belief, given industry experience with bag-of-words
classifiers. The practical validity of the model can be tested in several ways; k-fold
cross-validation will be used here.

Cross-Validation
In order to test the validity of the models, k-fold cross-validation is performed, with
k = 5. The input dataset is split into k subsets, with each subset containing 1/k of the
patient records, assigned by round-robin selection. Training is then performed using
k−1 of these subsets as input, and a model is built (that is, a model is build on 4/5’ths
of the data). The accuracy of the model is then evaluated on the subset that was held
out (on the remaining 1/5th). This process is repeated k times, to obtain k models, and
k different accuracy test results. The test results are then averaged together to obtain
an estimate to the overall system accuracy. That is, if a model were trained on the full
data-set (without any hold-outs), the accuracy of this resulting model, on new, blind
data, is expected to be similar to the cross-validated accuracy. The effects of choosing
different values of k are explored in a later section.

During cross-validation, four different statistics are gathered: the number of true-
positives (TP), false-positives (FP), true-negatives (TN) and false-negatives (FN). All
models were built as binary classifiers, so that ’positive’ refers to membership in cohort
2: the suicide cohort. Thus, in this case, false-positives are those who were incorrectly
classified as suicidal, whereas false-negatives are patients whose suicide was not fore-
seen. These four statistics can be presented in the form of a two-by-two table, termed
the ’confusion matrix’. An example of such a matrix is shown in table 4.

In order to be a clinically useful system, it is probably best that, if the system erred,
it did so by finding too many false positives, rather than by failing to detect a suicidal
patient (a false negative). There are five different result variables that capture this
idea in different ways: the ’recall’, ’precision’, ’accuracy’, F1-score and F2-score. The
’recall’ addresses the question “were all true positives identified (at the risk of some
false positives)?” The ’precision’ is the opposite: “were false positives minimized (at
the risk of failing to identify some true positives)?” Accuracy, F1and F2 are different
ways of blending these together to obtain reasonable composite scores. Presuming that
having a high recall is the clinically desirable way to classify patients, the F2-score
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Table 4: Example Confusion Matrix

Predicted negatives Predicted positives
Expected negatives Numb. of true negatives (TN) Numb. of false positives (FP)
Expected positives Numb. of false negatives (FN) Numb. of true positives (TP)

Results are reported in the form of the above confusion matrix. Scores for this matrix
are given by the equations (1).

is then probably the best quantity to maximize. Note that maximizing F2 can hurt
accuracy (i.e. too many false positives), while maximizing accuracy can lead to more
false-negatives than might be desirable.

Mathematically, these five quantities are defined as follows. These are the standard
textbook definitions.

recall =
T P

T P+FN

precision =
T P

T P+FP

accuracy =
T P+T N

T P+FP+FN +T N
(1)

F1 =
2× precision× recall

precision+ recall

F2 =
5× precision× recall
4× precision+ recall

Here, TP stands for ’true-positive’, as above. All five quantities can vary between
0 and 1. For a system with a perfect score, all five quantities would equal 1. If all
classification was done by random chance, then all recall and accuracy would equal
0.5 (for binary classification) and precision would be the fractional size of the positive
group (0.5 if the positive and negative groups are identical in size). As most of the data
analysis concerned groups that were equal in size, it is desired that all five quantities
should be above 0.5. Note that it is possible to have a classifier that simultaneously
scores above 0.5 for some of these measures, and below 0.5 for others.

Ensembles and Voting
In what follows, the concept of an ensemble[5] will be used in two related, but rather
distinct ways. In the first sense, already discussed above, a model consists of an en-
semble of representations; each representation gets a vote to determine the final classi-
fication that a model makes. In this construction, the nature of the individual represen-
tations can remain rather opaque, as their effect on the final classification is indirect.
In order to gain more insight into how individual representations combine to form an
ensemble, a restriction is made, in most of what follows, to limit each model so that
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it holds only a single representation. Thus, in most of what follows, the ensemble is
overt, and its behavior is overtly, explicitly presented. That is, the distribution of the
classifications made by each representation, the average behavior, and the variance, is
explicitly presented. Since each model holds only one representation, the ensemble is
referred to as an ensemble of models.

However, in the end, one wants to revert to the intended purpose of the ensemble,
which is to improve accuracy by combining multiple representations into one model,
and performing classification by majority vote. In this case, the accuracy of a model
will presumably depend on the number of representations within it. An exploration of
how this accuracy depends on the size of the ensemble is given in the final sections.
To summarize, there are two ensembles: the ensemble of representations comprising a
model, and the ensemble of models.

Ensemble Formalities
This section sketches a formal, mathematical development of the ensemble classifier.

Let P(g|p,m) be the probability that a given model m will classify a given patient
p into group g. For a fixed patient and model, this probability is either zero or one (the
classifier either assigns the patient to group g or it doesn’t), so that P(g|p,m) is just the
set-membership function:

P(g|p,m) = 1g|p,m

The classifier may be incorrect in it’s assignment, of course. In what follows, it is
presumed that all classifiers are binary, so that the group g ranges over the values
{pos,neg} denoting that a patient does or does not belong to the group. The law of
the excluded middle is assumed:

P(g = pos|p,m)+P(g = neg|p,m) = 1

that is, a given patient is classified as either positive or negative.
If the patients are divided into a training set and a test set, and the classifier is

trained on the training set, then P(g|p,m) can be directly measured and evaluated on
the test set. Let Spos and Sneg be the sets of patients in the test set that are positive
or negative for belonging to the group g. Then a given classier m gives the following
counts for true positives (TP), etc:

T P = ∑
p∈Spos

P(g = pos|p,m)

FP = ∑
p∈Sneg

P(g = pos|p,m)

FN = ∑
p∈Spos

P(g = neg|p,m)

T N = ∑
p∈Sneg

P(g = neg|p,m)

The above formulas merely provide a more formal definition connecting two different
notations for the same concepts, and nothing more.
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The ensemble average is given by

P(g|p) =
1
|M| ∑

m∈M
P(g|p,m)

where M is the set of models making up the ensemble, and |M| is the size of this set. In
essence, the ensemble average is an expectation value. Note that the ensemble average
is now a real-valued quantity, ranging over the interval [0,1]. The poses inference
command uses the ensemble average to perform classification, and reports the average
itself as the ’confidence’ of the inference. Specifically,

in f er(p) =

{
pos if P(g = pos|p) > 0.5
neg if P(g = pos|p) < 0.5

and

con f idence(p) =

{
2P(g = pos|p)−1 if P(g = pos|p) > 0.5
2P(g = neg|p)−1 if P(g = neg|p) > 0.5

Note that this is closely related to the accuracy (equation 1 above) on the test set:

accuracy =
1
|S|

[
∑

p∈Spos

P(g = pos|p)+ ∑
p∈Sneg

P(g = neg|p)

]

where |S|=
∣∣Spos

∣∣+ ∣∣Sneg
∣∣ is the size of the test set.

Results Overview
A number of different data analysis experiments were performed. These include the
effect of tuning adjustable parameters on the machine-learning system, the exploration
of ensemble averages, the examination of the words that appeared in actual models, the
effect of data cuts (i.e. excluding infrequent words from the models), and the predictive
value of word-pairs, trigrams and 4-grams.

Example Model
Running the the classifier once, for a given set of parameters, results in a single model
being created. The precise model, and its accuracy, depends on the training parame-
ters, such as run-time, the number of features selected, the number of representations
comprising the model, and other variables. In all cases (for all parameter settings), the
resulting model fits the training data very well. One such case, typical of all, is shown
in table 5. When this model is evaluated on the test set, the accuracy and other mea-
sures are, of course, sharply lower. In essence, the model is over-fit on the train set.
The results for the best-fit model on the test set are shown in table 6.
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Table 5: Training Confusion Matrix, Group 1 vs. Group 2

Predicted Grp 1 Predicted Grp 2
Expected Grp 1 277 3
Expected Grp 2 11 265

Confusion matrix, in the form of table 4, for the training set. The model predictions
are shown in the columns, the expected results in rows. There are 4× (70+69) = 556
training records to be classified in a 5-fold cross validation.

Accuracy 0.9748 (542 correct out of 556 total)
Precision 0.9888 (265 correct out of 268 total)

Recall 0.9601 (265 correct out of 276 total)
FP Rate 0.0107 (3 false pos out of 280 total)

F_1 Score 0.9743
F_2 Score 0.9657

The results shown here indicate that the model that was created fits the training data
very well, excelling in all measures. This is to be expected for the training set. The data
shown are for a classifier that distinguishes groups 1 and 2, trained on the bag-of-words
dataset. There were 3000 features pre-selected, 240 features dynamically selected, and
two word-count thresholds used. In practice, these parameters have almost no effect on
the above results: essentially all parameter settings result in very similar measures.
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Table 6: Test Confusion Matrix, Group 3 vs. Group 2

Predicted Grp 1 Predicted Grp 2
Expected Grp 1 43 27
Expected Grp 2 22 47

Confusion matrix for the test set. The model predictions are shown in the columns,
the expected results in rows. There are 70+69 = 139 test records to be classified in a
5-fold cross validation.

Accuracy 0.6475 (90 correct out of 139 total)
Precision 0.6351 (47 correct out of 74 total)

Recall 0.6812 (47 correct out of 69 total)
FP Rate 0.3857 (27 false pos out of 70 total)

F_1 Score 0.6573
F_2 Score 0.6714

The results shown here are for a model trained on a set of 3000 pre-selected features,
dynamically narrowed to 500 features during the run. Input features were created by
partitioning the word-counts into 2 levels, with a threshold at the word-count average.
This model was selected to maximize accuracy, rather than recall or F2 score; however,
it appears to have the best F2 score of all those explored.

Each model consists of ten representations, each resembling that shown in table
1. Given these representations, positive and negative keywords can be extracted. Pos-
itive keywords are those that appear in the target group (here, group 2), but not (as
frequently) in the control group. Negative keywords are the reverse: they appear more
frequently in the control group than the target group. A set of positive keywords, dis-
tinguishing groups 2 and 3, are shown in table 7 and a set of negative keywords in table
8.

Note also that a fair number of the keywords apper to be typographic errors, or are
otherwise relatively rare. This can be easily explained: rare words will appear in rela-
tively few records, and thus their presence gives an immediate mechanism with which
to identify those records. Unfortunately, this also means that such keywords also have
a poor predictive value: the fact that some word was mis-spelled in a particular patient
record is very unlikely to be of any future use in classifying other patients. However,
it can also be counter-productive to exclude keywords becuse they do not seem to be
obviously relevant. For example, ’ALBUTEROL’ sometimes appears among the pos-
tive keywords; superficially, it is an asthma medication, and thus non-predictive and
irrelevant. However, it is also well-known to be associated with suicide risk. Telling
noise from data by examining keywords is not an easy task. The role of infrequent
words is explored in a later section.
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Table 7: Positive Keywords, Group 3 vs. Group 2

AA AAA ABOUT ADULT ANTIPSYCHOTIC APPOINT BARS CAH-
NGE CANCERS CONSISTANTLY DESPONDENT DISORDER DRUSEN
FRIGHTENING HC ICDCM INTERMITTANT LIPITOR LUQ MONFRI
NALCOHOL NOBODY PRIVATE PUNCTUM REGAINED REORDER
RESTRICTED SHAVE SPARE SPELL STANDARDS STRAIGHTENED
STRANGE STREET STVHCS STX SUBSALICYLATE SWABS TACH TE
TELEMETRY TEMAZEPAM THY TIB TP TRANSFUSIONS TRAVELS
TURMOIL TUSCON TWAVE UC ULTIMATELY UNCOOPERATIVE UN-
DERGONE UNRESECTABLE URINATED VALLEY VIDEOS VISUAL-
IZATION VTACH WATCHES WHEN WHIP WORTHLESSNESS WTIH
YE YOUNGER ZER

The above is a list of positive keywords that distinguish groups 2 and 3. That is, the
model requires that these words appear more frequently in group 2 than group 3. Note
the appearance of a fair number of emotionally laden words. Not all models result in
this particular word-list; differences between different models is discussed in a later
section.

Table 8: Negative Keywords, Group 3 vs. Group 2

AFRAID AGGRAVATING ALIGNMENT ALOH ALOT ANT AROUSE
BLOCKERS BRONZE CRYING DEMONSTRATING DENT DIREC-
TORY DISHEVELED DOCUSATE DPT EFFECTED EPIDERMAL FEAR
GEROPSYCHIATRY MEALTIME NEUT NOCTURIA NOTABLY OBE-
SITY OUTSTANDING PRACTICING PREFILLED PREOCCUPIED PRES-
BYOPIA PSYCHIATRICALLY QUADRANTS RANGES RESIDENTIAL
RUMINATES SPECIMEN SPLITTING SSN STAIN STRUGGLES STU-
DENT STYLE STYLES SU SUBLUXATION SUPERVISOR SUPERVI-
SORS SUPPLY SYMPTOMS TEACHER TEASPOONFUL TEETH TEM-
POPORMAND TFTS THI TON TOP TOPICAL TRAZODONE UCINA-
TIONS UES UNCHANGED UNHAPPY UNIQUE UNMARRIED UN-
PLEASANT UNSP UNT UPCOMING USEFULNESS VERIFIED VET
VIRTUE VISA VISIT VIT VOIDING VOLUME WALKIN WARNING
WARRANT WELLGROOMED WILLING WOUNDED XPATIENT YEAR

The above is a list of negative keywords that distinguish groups 2 and 3. That is, the
model requires that these words appear less frequently in group 2 than group 3. Given
that group 3 is the psych patient group, it is not surprising that many of the words seem
to have a psychiatric significance.
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Ensemble Averages
The space of all possible models of a dataset is astronomically large, and cannot be ex-
haustively searched. The moses/poses system uses a pseudo-random number generator
to explore different parts of the search space, both during the genetic algorithm part of
the search, and also during representation construction. The resulting final model thus
depends on the initial random number seed; how well the model scores will as well.
It is not clear how well the score of an individual model can be trusted, as there is no
a priori argument that it will always extend in a good way over a larger dataset. To
mitigate this uncertainty, an ensemble average may be used. In this case, the average
of a large number of models, each built with a different initial random number seed,
may be used.

In much of what follows, ensemble averages will be used. In all cases, 100 distinct
models are built. The figure 2 illustrates how this works: it shows a bar-graph of the
accuracy scores of 100 different models created with the same parameters and the same
dataset, differing only in the initial random number seed. The figure shows a Bell curve
fit to this data. A later section looks at model differences in greater detail.

Cross-Validation
Classifier performance depends strongly on the choice of the training set. To obtain an
idea of how the training set influences accuracy scores, several different experiments
were performed, summarized in table 9. In all cases, a total of ten different training/test
set partitions were created, by performing a random draw (that is, patients were cho-
sen randomly to belong to either the training or the test set). This allows the average
accuracy to be obtained across the ten different test sets, as well as the standard devia-
tion of the distribution. The data presented is for a bag-of-word-pairs model, which is
presented in greater detail in later sections.

The overall suggestion from table 9is that maximizing the size of the training set,
and then making up for the small size of the test set by averaging over many partitions,
is the best strategy. For the remainder of the analysis, an 80/20 split, averaged over five
round-robin partitions, will be used: this is the 5-fold cross validation.

Parameter Tuning
One of the most time-consuming experiments is to determine the optimal settings for
the training parameters. The two most important and sensitive of these are the number
of bins chosen for word-counts, and the number of dynamic features. The size of
the static feature list seems to have little bearing on the ultimate score, once this is
reasonably large; a static feature set of 3000 seems to be sufficient. Nor does the total
training time seem to matter much, once it is sufficiently long. Increasing the training
time will cause the system to build ever-more complex models, attempting to attain a
perfect score on the training set. These more complex models do not appear to score
better on the test set, nor do they appear to score any worse, either.

One noteworthy effect, though, is that the larger the dataset size, the less sensitive
the results are on these adjustable parameters. Roughly speaking, the parameters are
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Figure 2: Ensemble Average
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This bar chart shows the distribution of model accuracy scores for 100 models built
to distinguish between the cohort 2 and cohort 3 for the bag-of-words dataset. The
accuracy scores of each model was assigned to a bin that is 0.02 wide; thus there are
five bars between 0.5 and 0.6 in this graph. The models were trained with with a
single-word bag-of-words dataset, with word-count thresholding into 4 bins, and 240
dynamically chosen features, out of an initial feature set size of 3000. The fitted curve
is a Gaussian, with a mean of 0.5645 and a standard deviation of 0.0329. This graph
suggests that the ’typical’ accuracy of a single model is then 56.45%, although there
are a few models that score exceptionally well, including five models with an accuracy
of 64% or better. It is not clear that the distribution is in fact Gaussian; it is possible that
a log-normal distribution would provide a better fit. Note that a log-normal distribution
would be centered at the location µ = 0.5728.
Note that this same bar chart is shown again in figure 6, where it is compared to other
models. Although this shows the best bag-of-words model, it is outperformed by all
bag-of-phrases models.
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Table 9: Cross-Validation Performance

Mean Accuracy Std. Dev.
80/20 set 1 r0 0.635 0.098
80/20 set 1 r1 0.573 0.075

80/20 set 2 0.612 0.081
75/25 0.560 0.114
66/33 0.573 0.103
50/50 0.559 0.0510

Average accuracy and standard deviation over ten different training/test set partitions.
The 80/20 partition allocates 80% of the patients to the training set, and 20% to the test
set. Three different experiments are shown: “set 1 r0” and “set 1 r1” both use exactly
the same partitions, but initialize the learner with two different random seeds. The
“set 2” experiment explores accuracy over a a completely different set of ten partitions.
The rows labeled 75/25, 66/33 and 50/50 explore the effects of reducing the size of the
training set.

used to ’focus’ on the distinctive parts of the dataset, in much the same way that image
processing is used to sharpen an image. For the larger datasets, there seems to be less
of a need to ’focus’; but whether this is a real effect or an artifact is unclear. All of the
datasets are small, and the largest dataset is about three times the size of the smallest
one.

In order to evaluate the effect of this parameter tuning, ensemble averages, over
100 models, were used, as described above. For each set of parameters, the mean and
standard deviation of the accuracy distribution was computed. These, as a function of
the parameters, are shown in table 10. The figure 3 shows three typical distributions
from this table, one of which was already shown in figure 2.

Infrequent Words
Infrequently occurring words appear to play an important predictive role. By ’infre-
quent’ it is meant words that appear in less than a fourth of the patient records, and
possibly in as few as just two. This is quite a remarkable result, and it manifests itself
in several ways in the data. It raises questions: is this an artifact of working with sparse
data, or is it possible that suicidal patients present in a variety of ways, with no com-
mon set of symptoms? This section explores how infrequent words influence model
construction and model accuracy.

When using ensemble averages, the question arises: how similar or different are
the individual models? Do they differ only a little, or a lot? Measuring precise differ-
ences is difficult, due to the fact that the actual representations (table 1) are Boolean
program trees. However, a general indication can be had by generating keyword lists,
and comparing them between models.

This was done by generating N different models, with each model consisting of 10
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Table 10: Tuning the classifier, Group 3 vs. Group 2

Feat Num Thresh=1 Num Thresh=2 Num Thresh=3
Mean Acc Std Dev Mean Acc Std Dev Mean Acc Std Dev

40 0.5688 0.0234
50 0.5803 0.0243
60 0.5901 0.0261
75 0.5942 0.0268 0.5699 0.0256
90 0.5879 0.0366 0.5359 0.0302

120 0.5898 0.0265 0.5698 0.0265
150 0.5717 0.0259 0.5761 0.0272
180 0.5823 0.0276 0.5531 0.0219 0.5841 0.0322
240 0.5617 0.0305 0.5368 0.0270 0.5645 0.0334
360 0.5629 0.0334 0.5178 0.0276 0.5496 0.0290
500 0.5309 0.0313 0.5116 0.0290

This table shows the effect, on the mean accuracy, of tuning the classifier parameters.
All entries in the table are for models built from the same dataset, the bag-of-words
dataset that distinguishes groups 2 and 3. The table shows the mean accuracy and
standard deviation for the 5-fold validation of 100 models. All models were trained
so that 3000 features are pre-selected. The number of features dynamically selected
during run-time are indicated in the first column. The thresholds are used to bin
word-counts into 2, 3 or 4 bins by 1, 2 or 3 thresholds. When one threshold is used, it
is always set at the mean word count. When two thresholds are used, they are set one
standard deviation above and below the mean word count. When three thresholds are
uses, they are set at the mean, and one standard deviation above and below. Histograms
for the 240-feature case are shown in figure 3. It seems that using only one threshold is
usually, but not always the best. The dependence on the number of dynamical features
is somewhat uneven. The first three columns are graphed below.
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Figure 3: Parameter Variation
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An example of accuracy score distributions for three different parameter settings. All
three bar-graphs are built from the same dataset, the bag-of-words dataset that distin-
guishes groups 2 and 3. All three sets of models were trained so that 3000 features
are pre-selected, and 240 features are dynamically selected during run-time. The only
difference is whether the word-counts were binned into 2, 3 or 4 bins by 1, 2 or 3
thresholds. When one threshold is used, it is always set at the mean word count. When
two thresholds are used, they are set one standard deviation above and below the mean
word count. When three thresholds are uses, they are set at the mean, and one stan-
dard deviation above and below. Observe that almost all of the classification effect is
derived from using just one threshold: adding two more improves classification, but
only slightly. Observe that the threshold located at the mean appears to be the most
important; when it is not used, classification suffers. This is not always the case; for
some of the parameter settings, such as those where more or fewer dynamic-runtime
features are used, the situation is reversed: an even number of thresholds work better
than an odd number. Nor is it the case that adding more thresholds always improves
the score; sometimes, this leads to over-training instead, as is evident in table 10.
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representations. Each model is generated by using exactly the same parameters, but
differing only in the initial random number seed: thus, these are true ensembles. One
then asks: how many words are shared by all representations? How many are shared by
most representations? How many are shared by only half of them? The answer to these
questions is that two words are shared by all representations, six are shared by 90% of
all representations, and 17 by more than half of all representations. Rather surprisingly,
these counts do not depend much on the number N of different models: one can look at
10 or 150 models, and the number of words shared in common stays more or less the
same. This is shown in figure 4, where the percentages are graphed for N=10, 40 and
150 models (100, 400 and 1500 representations).

If may be the case that many of these words are acting as if they were synonyms
for one another: not in the literal sense of having the same meaning, but rather that
they are being used in similar contexts. Perhaps there is a common set of words that
are indicative, but some patient records only use some of them, while others use others.
But perhaps, there is a different situation: when a patient record has one of these words,
it also has many of the others. In such a case, it would be enough to pick just one of
these words out to build a model, and if different models picked different words, its is
only because they are inter-changeable, and the models are only superficially, but not
deeply, different. A cluster analysis would need to be performed to determine this.

Out of the collection of all words, what is the rank of the words chosen for use in
a model? This is hinted at in figure 5. As can be clearly seen, infrequently-used words
are vital for distinguishing patient groups. Indeed, it would appear that distinguishing
words all have fairly small counts (2 through 30 or 40), with a few exceptions. Observe
that not all rare words are used for model building: there are tens of thousands of words
that appear less than 5 times in the text; of these, less than a few hundred are selected
for use in a model.

However, this dependence on rare words for model building indicates that the sys-
tem is keying on attributes that are shared by only handfuls of patients. It is not clear
if this is an artifact of the small dataset size, or whether different patients are showing
distinct, non-overlapping ’symptoms’. Recall that there are only 70+69=139 patients
in total that are being discriminated between by these models. Thus, if a word appears
only 10 times in total in the entire text, then this word can select at most only 10 patients
(unless it is a negative keyword, in which case it can be used to rule out 139-10=129
patients). Is this happening because there are 10 patients who are presenting in a very
specific way? Or is this because the records are sparse, and that perhaps all patients
would present in this way, but it was simply not observed and noted? In other words,
do all suicidal patients present in the same way, or are there classes of distinct behavior
patterns? If there is commonality to all suicidal behavior, it is not particular evident in
this data.

A different measure of the importance of infrequent words can be obtained by ex-
cluding them from model building: that is, by creating models from word lists that
include only those words that occur 2 or 4 or more times in the text. Superficially, this
seems like a wise idea. If a word appears in only one patient record, and it is found
during the training phase, then it is impossible that this word will also appear in one
of the test patient records. Thus, it cannot contribute to the accuracy of the model on
the test set: both the positive and negative cohorts will be missing this word; it has no
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Figure 4: Common Keywords
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This graph shows the fraction of all representations that share words in common. Thus,
the highest ranked word is used in the largest number of representations, the next high-
est ranked word is used in the next greatest number of representations, and so on. For
the set of 10 models, there were 100 representations, which used 163 unique words
among them, sharing many of them. The set of 40 models (400 reps) used 371 unique
words, while the set of 150 models (1500 reps) used 682 unique words. Thus, creating
more models does cause more words to be employed, but at a diminishing rate. The
smooth line labeled ’Zipf Mandelbrot’ is a rough fit to the data, given by the formula
∼ (rank+8)−1.5 . The result here is phenomenological.
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Figure 5: Model Words Rank
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This graph reproduces that of figure 1, high-lighting the words that were used to con-
struct models in green. In total, there are 163 words highlighted in green, taken from
the N=10 model collection. It is clear that, with a few exceptions, most of the words
used to distinguish patient groups are words that are infrequently used. The red bar
in the lower right corresponds to words that appear only once amongst all the patient
texts. The next green bar above that corresponds to words that appear twice, and so on.
Thus, this graph makes clear that words that appear only a small number of times (2
through 30) are all vital for distinguishing patient groups. Note that, although the green
crosses appear to dominate the lower right of the graph, this is partly an illusion: there
are 163 green crosses in total, whereas there are more than ten thousands red crosses
to the lower right. Thus, although words that appear only twice in the text are vital for
model building, only a tiny fraction of these are actually used.
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Table 11: Data Cuts

Cut thresh=1 thresh=3
Mean Std. Dev. Mean Std. Dev.

none 0.5571 0.0297 0.5645 0.0329
2 0.5590 0.0298 0.5578 0.0270
4 0.5406 0.0318 0.5343 0.0296
8 0.5145 0.0331 0.5153 0.0279

16 0.4996 0.0313 0.5109 0.0288

This table shows ensemble averages for the accuracy, when infrequent words are cut
from the dataset. Thus, the row labeled ’4’ indicates results when all words appearing 4
or fewer times have been cut from the dataset. All results are, as usual, for an ensemble
of 100 models. All models were trained on the same set of parameters: 3000 statically
selected features, 240 dynamically selected features, and 1 or 3 thresholds, as indicated.
This is the parameter choice that results in the highest score when no cuts are made,
as shown in figure 2, figure 3 and table 10. Cutting words that appear only once is the
same as cutting none at all.

predictive value. If a word appears in only two patient records, then it is unlikely that
one of those locations will be in the test-set (due to the 4/5’ths - 1/5’th split). Thus,
one might also believe that such words have little or no predictive value. Perhaps accu-
racy can be increased by cutting down the dataset, and discarding all words that appear
fewer than M times in the dataset. But this is very much not the case. Results are
shown in table 11.

Cutting rare words decreases model accuracy. A modest cut of even 4 words has a
large impact on scores, and cutting more than that essentially wipes out the predictive
accuracy of a model almost completely.

Word Pairs and N-grams
A common issue that arises when machine learning is applied to sentiment analysis is
that positive and negative keywords can be negated in the text, inverting their meaning.
So, for example, a keyword “unhappy” may occur in a sentence “he is not unhappy.”
Another issue is that semantic meaning is not confined to single words, but can be
associated with word pairs, collocations (set phrases) and idioms. Looking at merely
one word of a collocation may imply a less refined meaning (“intramuscularly” is not
specific the way that “left deltoid intramuscularly” is) or possibly a completely different
meaning altogether (“disturbances” has psychological overtones; “visual disturbances”
suggest something completely different: glaucoma or macular degeneration. Similarly:
“alcohol” vs. “alcohol screening test”, “pain” vs. “pain relieving”, etc.) Thus, one
might expect greater predictive value arising from using neighboring word pairs or
even perhaps entire phrases[7]. This is indeed the case, as demonstrated in this section.

In order for this technique to work, one must be careful to apply appropriate cuts to
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the dataset. Simply including all possible word pairs does not improve model accuracy.
The reason for this is well-known: by including word-pairs, the number of candidate
features that might fit the data enlarges to a much larger number. Statistical chance
means that some of these may correlate strongly with the training set, even though they
are not actually predictive. Discarding word pairs with a low mutual information (MI)
score is an obvious cut to make; one may also contemplate discarding infrequent word
pairs, although experience with single words suggests that this is not a good idea.

An alternative to discarding word pairs with low MI is to consider only those word
pairs that involve a word that has previously been identified as being ’predictively sig-
nificant’, that is, a word that already occurs in a single-word model, such as those in
tables 7 and 8. Word pairs constructed from these words are ’clinically interesting’,
in that they provide a larger window into the notes occurring in a patient record. In
this sense, the approach is inspired by the central idea of corpus linguistics: in order
to better understand the meaning of a word, it is best to view it in context, to see how
it is being used. Inspired by this idea, it is reasonable to contemplate using three-word
phrases (trigrams) and 4-word phrases (4-grams) to construct a bag-of-phrases. In what
follows, these n-grams will be referred to as ’corpus n-grams’, indicating that they were
constructed from ’clinically interesting’ words. This is to draw a distinction between
these, and the set of all n-grams cut down by MI scores. This sort of an approach is
known to provide a positive benefit for classification[2].

To create the list of ’significant words’, an ensemble of 40 models were trained on
the group 3 vs. group 2 dataset. As noted previously, in the caption to figure 4, this
ensemble results in 371 unique words. The set of corpus n-grams were then selected
by considering only those n-grams that contained one of these 371 words.

In what follows, n-grams are constructed not only from n adjacent words, but also
from adjacent words with ’holes’ (wild-cards) in them. The reason for doing this is to
properly take into account multi-word noun and verb modifiers. Thus, for example, the
phrase “horrible frightening experience” is composed to two semantically interesting
units: “horrible_experience” and “frightening_experience” (this example is taken from
the actual dataset) . The first would not be captured if one limited oneself solely to
adjacent words when creating pairs. Likewise, when constructing 3-grams, not only
were three adjacent words considered, but also all possibilities for picking three words
out of a string of four consecutive words. When creating 4-grams, all possibilities for
picking 4 words out of 5 consecutive words were considered. When a bag-of-n-grams
is constructed, it also includes those n-grams that are shorter: thus, the bag-of-pairs also
includes single words, and the bag-of-trigrams also includes pairs and single words in
it. Thus, during model building, a pair or a trigram is used only if it results in a better
model than using some individual word.

This idea of allowing holes in n-gram construction is to partly emulate the action of
a syntactic parser, which would be able to identify meaningful semantic relationships,
such as adjective-noun or even subject-verb. In place of syntactic parsing, high mutual-
information phrases can help identify meaningful phrases, and in some ways, can even
be superior, given the fractured, badly-structured and non-grammatical content of the
notes. Unfortunately, even this approach is insufficient to deal with long-range corre-
lations between words in the text. The example given above occurs in a note as a part
of a semi-automated system for PTSD screening, whose full content, as it appears in
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Figure 6: N-grams
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This bar chart compares three different bag-of-phrases models to the highest perform-
ing bag-of-words model. Observe that all of the bag-of-phrases models outperform the
best bag-of-words model. Results of parameter tuning are shown in table 12.

the note, is: “Have you ever had any experience that was so frightening, horrible, or
upsetting that, IN THE PAST MONTH you: Have you had any nightmares about it or
thought about it when you did not want to? NO”. This note appears for a control-group
patient; the presence of such semi-automatically generated notes adds to the classifica-
tion challenge. It is not clear how to extract this kind of information; the challenge is
similar in some ways to that of anaphora resolution (the word ’NO’ being the resolution
to the question) , and perhaps techniques from that area could be applied.

The corpus-linguistics-inspired approach, of considering only those word phrases
that contain words that were previously identified as ’significant’, works very well.
This is illustrated in figure 6, where the results of four different experiments are shown:
the best bag-of-words result, the best corpus-pairs result, the best corpus-trigram result
and the best corpus 4-gram result. Particularly noteworthy is that all of the bag-of-
phrases models perform better than the best bag-of-words model. Of all these, the
most outstanding are the word-pairs results.

Creating the set of corpus-pairs requires having previously computed a list of ’sig-
nificant words’. Creating that list is time-consuming, since it requires training an en-
semble, extracting the words, and then training again, with pairs. Thus, it is natural to
ask if there are simpler ways of obtaining a list of ’significant words’ that are just as
good. There are: in fact, simple single-word feature selection is sufficient to create a
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Table 12: Bag of Phrases Tuning Results

Num. Dyn. Feat single words word pairs trigrams 4-grams
2 0.5301 0.5794 0.5642 0.5537
3 0.5112 0.5983 0.5473 0.5589
5 0.5168 0.6283 0.5649 0.5635
8 0.5305 0.6069 0.5440 0.5442
12 0.5065 0.5981 0.5551 0.5947
16 0.5450 0.5823 0.5614 0.6227
24 0.5284 0.5691 0.5615 0.5532
32 0.5735 0.5917 0.5546 0.6020
40 0.5688
50 0.5803 0.5914 0.6032 0.5981
60 0.5901 0.5868
75 0.5942 0.5899 0.5887 0.5801
90 0.5879 0.6227 0.5721 0.6019

105 0.5769
120 0.5898 0.5772 0.5817 0.5706
150 0.5717 0.5884
180 0.5823 0.5906 0.5727 0.5792
240 0.5617 0.6036 0.5746 0.5773
300 0.6028
360 0.5629 0.5891 0.5784
400 0.5911
500 0.5309 0.5715 0.5816 0.5655

This table shows ensemble averages for the accuracy as the number of run-time
dynamic features was varied. As usual, the ensemble consists of 100 models, made
from 3000 pre-selected features; only one threshold is used. Single-word results are

identical to those reported in table 10. The best ensembles from each column are
graphed in figure 6. The datasets were subjected to cuts: All words and n-grams that

occurred 4 or fewer times were cut, as were all n-grams with an MI of less than 2. The
chart below graphs the table contents. Bars showing the standard deviation are plotted

only for the single-word scores; those for phrases are comparable or smaller.
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Table 13: Choosing Significant Words

Word Source Mean Accuracy Std. Dev.
Ensemble 0.5986 0.0324

Feature Selection 0.6036 0.0295

A comparison of word-pair ensemble accuracy results for sets of corpus word-pairs
created from two different sources of ’significant words’. The ensemble ’significant
words’ consist of 371 words taken from an ensemble of 40 models. The feature-
selection ’significant words’ consist of 371 words selected by maximizing mutual in-
formation between the word counts and the cohort id. The ensembles were trained with
the same parameters as reported above: 3000 static features, 240 dynamic features, 1
threshold, on the group 3 vs. group 2 dataset.

list of ’significant words’ that is every bit as good as that obtained from the ensemble,
and maybe even a little bit better, as shown in table 13. To make the two methods
comparable, a simple mutual-information-maximizing feature selection step was per-
formed to select 371 words, the same number of words as obtained from the ensemble.
Feature selection runs in seconds, whereas training an ensemble of 40 models can take
hours.

The distribution of corpus-pairs vs. all-pairs is dramatically different, as shown in
figure 7. By selecting corpus pairs, thousands of the highest-MI pairs are discarded, as
well as most of the low-MI pairs, as well. Perhaps it is possible to replicate the corpus-
pairs results by applying a simple cut to the all-pairs dataset, and merely discarding
the low-MI pairs? This does not seem to be the case, as shown in table 14. This table
compares a bag-of-words model to several different all-pairs models, with different MI
cuts applied. Including all pairs does not improve the score over the bag-of-words. By
cutting out low-MI pairs, the score can be improved somewhat, but the effect is not
dramatic; certainly not as strong as the decision to use corpus-pairs.

The original bag-of-phrases results shown in tables 12, 13 and figure 6 were made
by employing some arbitrary, ’intuitive’ cuts for the number of words, and for mutual
information. Later experiments on the effect of cutting rare words shows a net negative
effect, as documented in table 11. Perhaps it is a mistake, then to cut rare words and
rare word-pairs, when using a bag-of-pairs model? It doesn’t seem so: table 15 shows
a counter-intuitive result. In this experiment, no rare words or pairs were cut; only the
cut for the MI was altered. None of the results approach the best accuracy from table
13. Thus, somehow, when word-pairs come into play, failing to cut rare words and
phrases makes things worse!

To improve scores, are the relevant cuts to the rare words, to the rare phrases, or
both? The answer is both, as revealed in table 16. Of the two, cutting infrequent words
seems to provide the greater benefit.
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Figure 7: Distribution of Mutual Information
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The distribution of corpus-pairs and all word pairs, ranked in decreasing order of mu-
tual information. The distributions are rather dramatically different; the corpus-pairs
distribution having a Zipfian segment which is lacking in the all-pairs distribution. The
relative rank of a pair can be obtained by drawing a horizontal line across the two
curves: the corpus-pairs set eliminated all of the high-mutual-information pairs, as
well as most of the low-mutual information pairs.
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Table 14: All-Word-Pair Cuts

Mean Accuracy Std. Dev.
Single Words 0.5617 0.0305

All Pairs 0.5602 0.0418
All Pairs MI>0 0.5764 0.0275
All Pairs MI>2 0.5646 0.0282
All Pairs MI>4 0.5751 0.0277
All Pairs MI>6 0.5655 0.0281

Ensemble averages for accuracy, comparing different cuts to the bag-of-single-words
accuracy. Simply including all word pairs does not improve the quality of the model.
Discarding those pairs with low mutual information scores does, however, have a net
positive effect. The best location for the MI cut is not entirely clear, though. All ensem-
bles were trained with 3000 pre-selected features, 240 dynamically selected features,
and one count threshold. (Note that these training parameters do not result in either the
best-words or the best-pairs models, and so should not be directly compared to those
results).

Table 15: Mutual Information Cuts

Mean Accuracy Std. Dev
Best Pairs 0.6036 0.0295

Pairs MI>0 0.5518 0.0294
Pairs MI>2 0.5871 0.0289
Pairs MI>4 0.5394 0.0250
Pairs MI>6 0.5340 0.0303

A study of the effect of varying the mutual information cut for corpus pairs. All models
were trained on the same parameters (3000 static features, 240 dynamic features, 1
threshold). The four entries labeled “Pairs MI>x” do not have any cuts for rare words
or rare pairs, and show the results of different MI cuts. The entry labeled “Best Pairs”
reproduces that from table 13: namely, having three cuts: besides MI>2, it also cuts
words that appear 4 or fewer times, and cuts phrases that appear 4 or fewer times.
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Table 16: Cutting Phrases

Word Count Cut Pair Count Cut Mean Accuracy Std. Dev
4 4 0.6036 0.0295
0 4 0.5871 0.0311
0 2 0.5814 0.0351
2 2 0.5830 0.0300
2 0 0.5908 0.0297
4 0 0.5901 0.0309
0 0 0.5871 0.0289
6 6 0.5711 0.0309

A comparison of different word and phrase cuts on the accuracy. All models are built
on the corpus-pairs dataset, and reject pairs with an MI of 2 or less, and were trained
on the same parameters (3000 static features, 240 dynamic features, 1 threshold). The
highest scoring ensemble also rejects words and word-pairs that occur 4 or fewer times.
The other entries explore the effect of cutting fewer or more words and/or pairs; none
do particularly well, not quite approaching the best result.

Static vs. Dynamic Feature Selection
The use of dynamic feature selection also has a strong effect on both training times (by
reducing the size of the problem) as well as on the quality of the fit. Table 17 shows
the effect of dynamic feature selection on the overall score.

Evaluation Times
MOSES is not immune to the effect of over-training: longer training times result in a
better fit to the train dataset, but the resulting models perform more poorly on the test
dataset. In essence, longer training times allow the system to find quirks in the training
set that are not present in the test set. Once a minimum amount of training has been
done, any correlation between train and test scores disappears; there is even a vague
hint of anti-correlation as shown in figure 8.

Optimum training times are explored in table 18. Training times are measured in
terms of the number of evaluations of the scoring function: a single comparison of the
model to the training table counts as one evaluation. The highest score for each row is
marked in bold (magenta); the second-highest score in italic (cyan). The very highest
score, over the entire table, of 63.68%, occurs at a training time of 5000 evaluations
and 90 dynamical features (indicated in bold sans-serif). Most of the high scores occur
when 9000 or fewer training evaluations are performed. The exceptions occur when the
number of dynamical features is extremely small: this suggests that the model builder
is starved for features at this point, and must iterate over many trials before finding the
appropriate features.
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Table 17: Static vs. Dynamic Feature Selection

Num. Feat. Static Dynamic
2 0.5794
3 0.5983
5 0.6283
8 0.6069

12 0.5981
16 0.5823
24 0.5553 0.5691
32 0.5580 0.5917
50 0.5628 0.5914
60 0.5868
75 0.5960 0.5899
90 0.5958 0.6227

105 0.5769
120 0.5764 0.5772
150 0.5884
180 0.5619 0.5906
240 0.5526 0.6036
300 0.6028
360 0.5436
400 0.5911
500 0.5501 0.5715

This table shows ensemble averages for the accuracy comparing static and dynamic
feature selection. As usual, the ensemble consists of 100 models; one threshold was
used. The dynamic feature-selection results are identical to those reported in table 12;
they are obtained by statically selecting 3000 features, and then dynamically selecting
the indicated number from those. By contrast, the static selection process just chooses
the indicated number of features initially, and makes no dynamic selection at all.
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Table 18: Training Time Dependence
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Figure 8: Train-Test Score Correlation
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The above two scatter-plots show the test vs. train scores for 100 models. As should
be clear, there is essentially no correlation: a model that scored well on the training
set may or may not do poorly on the test set, and vice versa. The left figure is for
5 dynamical features, the right figure is for 320. As is clear from the x-axis labels,
using more dynamical features helps improve the training score by a lot; however, the
test-score degrades, as noted in table 12.

Voting
The concept of the ensemble replaces a significant random variation in the accuracy
of a single representation with a more trustworthy average accuracy across multiple
representations. This does not imply that the accuracy of the ensemble model is equal
to the average accuracy of the representations in the ensemble. When multiple repre-
sentations are allowed to vote for a final classification, the accuracy of the classifier
usually increases[5]. This section explores how the accuracy of a model depends on
the number of representations voting in the model.

The results here are reported in the same fashion as before, except that now, each
model contains N representations, instead of just one representation. In essence, there
is now an ensemble of ensembles: although a model may consist of N representations,
we still explore the average accuracy taken over 100 models. The raw data are pre-
sented in 19 and graphed in 9. Typical cross-sections are shown in 10.

Additional insight can be gained by examining how the representations voted for
individual patients. This is shown in figure 11. Any given patient can receive anywhere
from 0% to 100% of the votes. A vote ’for’ indicates the patient belongs to group 3, a
vote ’against’ indicates that the patient belongs to group 2. Thus, those receiving less
than 50% of the vote are classified as group 2; those receiving more are classified as
group 3. The graph then shows the fraction of votes received, versus the known a priori
patient cohort membership. Ideally, a 100% accurate classifier would always give more
than 50% of the votes to group 3 members, and always less than 50% of the votes to
group 2 members. The fact that the classifier is sometimes wrong is readily apparent
in the graph.

A notable feature of the graph is that it is not symmetrical: that is, the red bars
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Table 19: Voting Ensemble Averages

Model Size Mean Std. Dev.
1 0.6425 0.0302
3 0.6520 0.0257
7 0.6563 0.0209

11 0.6566 0.0154
15 0.6576 0.0156
21 0.6614 0.0131
31 0.6630 0.0117
41 0.6633 0.0089
55 0.6653 0.0104
81 0.6690 0.0086

101 0.6678 0.0096

Voting ensemble results. Each model consists of N=’Model Size’ representations,
with a majority vote determining how the model classifies. The mean and standard
deviation are obtained by averaging over 100 different models, built by varying the
initial random number seed of the machine learning system. Note that the standard
deviation of the N=1 model is comparable to that of 2; as N increases, the score
improves, and the variation shrinks sharply.

All models were word-pair models, with the usual word-pair cuts (mi>2, and all
single-words and word pairs that appear less than 4 times discarded). Word pairs
were considered only if they one of the two words were one of the top 750 most
score-correlated single words (this differs from the other reported word-pair results,
where 371 words were used to create pairs; thus scores are not immediately compara-
ble). The run-time dynamical feature count was set to 90, and a total of 9000 training
evaluations were performed. These parameters are more or less identical to those
discussed for much of this paper, and, for the N=1 case, correspond to the highest
score seen.

This table is graphed in figure 9.
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Figure 9: Voting Ensemble
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Above is a graph of the voting model accuracy for the va32 dataset (750 significant
features, -m=9000 training time). Raw data taken from table 19

Far left is the best result for models containing a single representation: i.e. poses
was trained 100 times, on the same parameters, varying only the initial random
seed. The average accuracy was 64.25% The error bars show the variation among
these 100 models: some scored as high as 69%, some were down in the mid-upper 50’s.

The next point over shows the results for a model containing N=3 representations.
That is, 3 different random seeds are used to create 3 representations. These are placed
in a model, and these then ’vote’ for the most likely classification (the cohort that gets
2 or more votes ’wins’). This process is repeated 100 times (same parameters, thus
300 different random seeds). The average accuracy of 100 N=3 models is 65.63% The
error bars again show the variation among these 100 models: the best scoring model
hit 69%, the worst-scoring had a low of 61%

The rightmost point is for a model holding 101 representations. The average accuracy
(of 100, etc.) is 66.53% the best scoring is 69%. The worst-scoring is 63%. Notice
that the best scores are always pegged at 69% The ensemble seems to merely trim
away the outliers with the bad scores.
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Figure 10: Distribution of Voting Models
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This figure demonstrates typical distributions taken from figure 9; the means and widths
of the Gaussians shown here are exactly those of table 19.
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Figure 11: Voting Blocks
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This figure shows a model comprising N=101 representations, voted to classify
individual patients. Vote counts were divided into 10 bins; the number of patients
receiving that number of votes is shown. Thus, the tall green bar on the far left
indicates that 18 patients from group 2 received 10% or fewer votes; these patients are
correctly classified by the voting. By contrast, the red bar on the far left indicates that
6 patients from group 3 received 10% or fewer votes; these patients are misclassified
by voting. Indeed, all red bars to the left of the 50% mark, and all green bars to the
right of the 50% mark indicate misclassified patients.

Just as in the rest of this paper, this shows the performance of the classifier on the test
set, using 5-fold validation. Different models, created with different random seeds,
show a very nearly identical vote distribution.
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are not a mirror image of the green bars. Of particular interest is that the classifier is
overall quite confident in its classification of group 3 patients (this is the psychiatric
group); this can be seen in the tall bar on the right-hand side of the graph. That is,
given a patient from group 3, the classifier can correctly classify the patient with good
accuracy and high confidence. This is not at all the case from group 2, the suicide
cohort: here, the classifier is clearly less accurate, and more tentative in its assignment.
This can be seen in that the left-most green bar is not that tall, and that the rightmost
green bar is not very small, as one might have hoped. In essence, the classifier is good
at recognizing the psychiatric patients; but the suicidal patients, not so much.

Conclusion
Training classifiers to distinguish the three groups of patients is a straightforward task.
Given the relatively small dataset size, it was also easy to train these classifiers to be
“over-fit”: to perform very well on the training set, sometimes achieving a perfect
score, but scoring rather poorly on the test set. Accuracies up to 67% were obtained
for ensemble averages of 100 models, trained on the best parameter choices, with indi-
vidual model accuracies rising as high as 69%.

Finding the best models is an arduous task. To evaluate an ensemble of 100 models
with 5-fold cross-validation requires a total of 500 models to be trained; this can take
days of wall-clock time, as individual models require anywhere from a few minutes
to a decent fraction of an hour to train. In order to obtain a good fit, several training
parameters must be explored: the thresholding of word-counts into bins, and the run-
time dynamical feature-selection size. These parameters must be tuned individually for
different data sets; they are adjusted to best bring a view of the dataset into sharp focus.

The most interesting result is that word-pairs can be used to build more accurate
models than single words alone. However, in order for this to work well, a number
of data cuts must be applied: word pairs with low mutual information scores should
be discarded; infrequently occurring pairs and words should be discarded, and, most
important of all, word-pairs that don’t contain ’significant’ words should be discarded
as well.
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