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Appendix S1

Formulation of the basic model without any control

Two routes of cholera transmission have been described in the literature, primary and secondary transmission.
Primary transmission occurs due to an exposure to the contaminated environmental reservoir which contains V.
cholerae bacteria. This scenario was mathematically modelled by Codeço et.al.[1]. Primary infection immensely
depends upon the climatic and environmental factors that affect the seasonal pattern of infection [2,3,4,5,6,7,8]. In
locations like Africa and South America, where, one yearly peak of cholera is often observed, the beginning of the
epidemics has been associated with environmental conditions that favor the growth and survival of the bacterium
[1,9]. Primary transmission plays only a limited role in an epidemiological process since it does not fully explain
the exponential growth of incidences during epidemics.

Merrell et.al.[10] showed that freshly shed V. cholerae from human intestines out competes other V. cholerae
by as much as 700-fold for at least the first 5 hours in the environment. This scenario is modelled by Hartley
et.al.[11] by modifying the earlier model by Codeço et.al.[1] to explicitly account for the concentration of hyper-
infectious bacteria within the drinking water. Associating higher levels of hyper-infectious concentrations with
increased human-to-human transmission, the authors illustrate the importance of this additional transmission route
(secondary transmission) in modelling the explosive epidemics, often associated with cholera [11].

We extend the model by Hartley et.al.[11], by assuming periodic contact rate in both transmission (primary and
secondary), as seen in most of the cholera affected African and South American countries where one yearly peak of
cholera is often observed. So we assume that the time period of transmission rate varies over 52-week period and
also incorporates cholera-related death rate, which was also neglected. We consider the total human population size
at time t is denoted by N(t), which consists of susceptible human S(t), infected human, I(t) and recovered human,
R(t). Total bacteria population at time t consists of hyper-infectious bacteria BH(t) and low-infectious bacteria
BL(t).

Susceptible population is increased by constant recruitment of newborn at a rate ΠH and by those recovered
populations who loses their temporary immunity to cholera at a rate ω. Susceptible human is reduced by getting
infected on contact with hyper-infectious and low-infectious bacterium at rates βH(t) BH

KH+BH
and βL(t)

BL

KL+BL
and

also decreased by natural death at a rate µd.

Infected human is increased by those susceptible humans who got infected in contact with hyper-infectious and
low-infectious vibrios and decreased by those who recovered from cholera at rate γ, those who die due to cholera
infection at a rate µc and those who die naturally at a rate µd.

Recovered human population is increased by those infected people who got recovery from the disease at a rate
γ and reduced due to loss of natural immunity to cholera at a rate ω and who dies naturally at a rate µd.

Hyper-infectious bacterium is enriched from the amount of HI V. cholerae bacterium in the contaminated
aquatic environment due to infected human feces at a rate ξ and diminish due to decay from hyper-infectious state
to low-infectious state at a rate χ.

We assume that hyper-infectious bacterium losses their hyper infectivity at a rate χ to become low infectious
and their natural death rate in aquatic environment is δL.

Based on the assumptions stated above, we can now write down the following system of nonlinear differential
equations:

dS
dt

= ΠH + ωR− βH(t) BHS

KH+BH
− βL(t)

BLS

KL+BL
− µdS

dI
dt

= βH(t) BHS

KH+BH
+ βL(t)

BLS

KL+BL
− (γ + µd + µc)I

dR
dt

= γI − (ω + µd)R

dBH

dt
= ξI − χBH

dBL

dt
= χBH − δLBL

(S.1)
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where,

βH (t) = βH0{1 + δ
2
(1 + cos( 2πt

52
))}

βL(t) = βL0{1 + δ
2
(1 + cos( 2πt

52
))}

(S.2)

Parameter values of the basic model (S.1)

For biological feasibility, we assumed all parameters to be non-negative. The description of the model (S.1) param-
eters and their interpretation are given in the Table S1. Estimated values of the model (S.1) parameters (βH0,
βL0, δ, ξ and µc) for each province of Zimbabwe are given in Table S3 in the format estimate (95% CI). Table S4
contains estimated initial conditions of the model (S.1) in the same format as in Table S3.

Basic properties of the cholera model (S.1) without control

We claim the following result:

Theorem 1 The solutions (S(t), I(t), R(t), BH(t), BL(t)) of the model (S.1) are uniformly and ultimately bounded
in R

5
+, i.e. there exist an L > 0 and a T > 0 such that (S(t), I(t), R(t), BH(t), BL(t))≤ (L, L, L, L, L) for all t

≥ T .

Proof: Adding first three equations we get

dN
dt

= ΠH − µdN − µcI.
≤ ΠH − µdN

Hence, by standard comparison theorem [12], there exist t1 > 0, such that N(t) ≤ ΠH

µd
for all t ≥ t1. Thus we

have S(t) ≤ ΠH

µd
, I(t) ≤ ΠH

µd
and R(t) ≤ ΠH

µd
for all t ≥ t1. Now by fourth equation we have,

dBH

dt
≤ ξΠH

µd
− χBH .

So again by comparison theorem [12], there exist t2 ≥ t1 such that BH(t) ≤ ξΠH

χµd
for all t ≥ t2.

Similarly from the fifth equation, there exist T ≥ t1, t2 such that BL(t) ≤
ξΠH

δLµd
for all t ≥ T .

Let L = max{ΠH

µd
, ξΠH

χµd
, ξΠH

δLµd
}.

Thus it follows, S(t) ≤ L, I(t) ≤ L, R(t) ≤ L, BH(t) ≤ L, BL(t) ≤ L for all t ≥ T .

Therefore the solution of the system (S.1) are uniformly and ultimately bounded in R
5
+. �

Existence and local stability of the disease free periodic state

The Model (S.1) has a unique disease free equilibrium given by:

E0 = (ΠH

µd
, 0, 0, 0, 0). (S.3)

To prove local stability we first calculate the basic reproduction number (R0) of the system (S.1) according to
the procedure presented by Wang and Zhao (2008) [13].

Following [13], we calculate the matrix of new infection as:
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F (t) =

















0 βH(t)ΠH

KHµd

βL(t)ΠH

KLµd

0 0 0

0 0 0

















and the transmission matrix as:

V (t) =

















(γ + µc + µd) 0 0

−ξ χ 0

0 −χ δL

















Let, Y (t, s), t ≥ s be the evolution operator of the linear ̟-periodic system

dy
dt

= −V (t)y (S.4)

That is, for each s ∈ R, the 3× 3 matrix Y (t, s) satisfies

d
dt
Y (t, s) = −V (t)Y (t, s),

for all t ≥ s and Y (s, s) = I, where I is the 3× 3 identity matrix.

Let C̟ be the ordered Banach space of all ̟-periodic functions from R to R
3 which is equipped with maximum

norm ‖.‖∞ and the positive cone C+
̟ = {φ ∈ C̟: φ(t) ≥ 0, for all t in R}. Consider the following linear operator

L :C̟ → C̟ by

(Lφ)(t) =
∫+∞

0
Y (t, t− a)F (t − a)φ(t − a)da (S.5)

Following Wang and Zhao (2008) [13], we call L the next infection operator, and define basic reproduction
number as R0 := ρ(L), where ρ(L) is the spectral radius of L.

Biologically this operator signifies that, if φ(s),̟-periodic in s, be the initial distribution of infectious individuals.
Then F (s)φ(s) is the rate of new infections produced by the infected individuals who were introduced at time s.
Given t ≥ s, then Y (t, s)F (s)φ(s) gives the distribution of those infected individuals who were newly infected at
time s and remain in the infected compartment at time t. It follows that, operator (S.5) implies the distribution
of accumulative new infections at time t produced by all those infected individuals φ(s) introduced at some time
previous to t.

Motivated by the concept of partial reproduction number defined by Mukandavire et.al.[14], we also introduced
two partial reproductive numbers for our system as: Rh := ρ(L1) and Rl := ρ(L2), where operator L1 and L2 are
given as follows:

(L1φ1)(t) =
∫+∞

0 Y (t, t− a)F1(t − a)φ1(t− a)da (S.6)

and

(L2φ2)(t) =
∫+∞

0
Y (t, t− a)F2(t − a)φ2(t− a)da (S.7)
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where, incidence matrices, F1 and F2 are given as follows:

F1(t) =

















0 βH(t)ΠH

KHµd
0

0 0 0

0 0 0

















and

F2(t) =

















0 0 βL(t)ΠH

KLµd

0 0 0

0 0 0

















Numerically, R0, Rh and Rl for our periodic system (S.1) can be calculated according to following procedure:
let W (t, λ) be the fundamental matrix of the linear ̟-periodic system

dw
dt

= (−V (t) + F (t)
λ

)w, (S.8)

t ∈ R with parameter λ ∈ (0,∞).

Since F (t) is nonnegative and −V (t) is cooperative (off diagonal element are nonnegative), it follows that
ρ(W (̟,λ)) is continuous and non-increasing in λ ∈ (0,∞), and limλ→∞ ρ(W (̟,λ)) < 1. It is easy to verify that
system (S.1) satisfies assumptions (A1)-(A7) in [13]. Thus we have the following two results

Lemma 1 (Wang and Zhao (2008)[13], Theorem 2.1) The following statements are valid:

(i) If ρ(W (̟,λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of operator L, defined in (S.5), and
hence R0 > 0.
(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(W (̟,λ)) = 1.
(iii) If R0 = 0 if and only if ρ(W (̟,λ)) < 1 for all λ > 0.

Lemma 2 (Wang and Zhao (2008)[13], Theorem 2.2) The following statements are valid:

(i) R0 = 1 if and only if ρ(ΦF−V (̟)) = 1.
(ii)R0 > 1 if and only if ρ(ΦF−V (̟)) > 1.
(iii)R0 < 1 if and only if ρ(ΦF−V (̟)) < 1.

Lemma 1 is used to calculate R0, Rh, Rl numerically and using Lemma 2 we have the following result:

Theorem 2 If R0 < 1 disease free equilibrium (E0) of system (S.1) is locally asymptotically stable and if R0 > 1,
then it is unstable.

Global stability of the disease free state

Let (Rk,Rk+) be the standard ordered k-dimensional euclidian space with norm ‖.‖. For u, v ∈ R
k, we write u ≥ v

provided u− v ∈ R
k
+, u > v provided u− v ∈ R

k
+ \ {0}, and u ≫ v provided u− v ∈ Int(Rk+).

Recall that a k × k matrix A = (aij) is said to be irreducible if its index set {1, 2, ...., k} cannot be split into
two complementary sets (without common indices) {m1,m2, ....,mν1} and {n1, n2, ...., nν2} (ν1 + ν2 = k) such that
ampnq

= 0 ∀ 1 ≤ p ≤ ν1, 1 ≤ q ≤ ν2.
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Let A(t) be continuous, cooperative and irreducible and ̟-periodic k × k matrix function, ΦA(.)(t) be the
fundamental matrix solution of the linear ordinary differential equation

dx
dt

= A(t)x (S.9)

and ρ(ΦA(.)(̟)) be the spectral radius of the monodromy matrix ΦA(.)(̟). It then follows from [15,16], that
ΦA(.)(t) is a matrix with all entries positive for each t > 0. Therefore, by Perron-Frobenius theorem, ρ(ΦA(.)(̟)) is
the principal eigenvalue of ΦA(.)(̟) in the sense that it is simple and admits an eigenvector v∗ ≫ 0. The following
result by Zhang and Zhao (2007)[17], is useful to prove global stability of E0 and in upcoming sections.

Lemma 3 (Zhang and Zhao (2007)[17], Lemma 2.1) Let s = 1
̟
ln ρ(ΦA(.)(̟)). Then there exists a positive, ̟-

periodic function f(t) such that estf(t) is a solution of (S.9).

We claim the following:

Theorem 3 If R0 < 1 then disease free periodic state E0 is globally asymptotically stable.

Proof: From Theorem 2 we have if R0 < 1, disease free equilibrium E0 of the system (S.1) is locally asymptot-
ically stable, therefore it is sufficient to show that E0 is globally asymptotically stable for R0 < 1.

From second, forth and last equations of (S.1) we have,

dI
dt

= βH(t) BHS

KH+BH
+ βL(t)

BLS

KL+BL
− (γ + µd + µc)I

≤ βH(t)ΠH

µd

BH

KH+BH
+ βL(t)

ΠH

µd

BL

KL+BL
− (γ + µd + µc)I

≤ βH(t) ΠH

µdKH
BH + βL(t)

ΠH

µdKL
BL − (γ + µd + µc)I

dBH

dt
= ξI − χBH

dBL

dt
= χBH − δLBL,

(S.10)

∀ t ≥ 0, as 0 ≤ S(t) ≤ ΠH

µd
and BH ≥ 0.

Now, consider the auxiliary system:

dI
dt

= βH(t) ΠH

µdKH
BH + βL(t)

ΠH

µdKL
BL − (γ + µd + µc)I

dBH

dt
= ξI − χBH

dBL

dt
= χBH − δLBL

(S.11)

Which can be written as:

dX
dt

= (F (t)− V (t))X, (S.12)

where X = (I(t), BH(t), BL(t))
T .

Now (F (t)− V (t)) is continuous, cooperative and irreducible, therefore by Lemma 3, there exists a positive, ̟-
periodic function X̄(t) such that X(t) = est X̄(t), is a solution of the system (S.12), where s = 1

̟
ln ρ(ΦF (.)−V (.)(̟)).

From Lemma 2, if R0 < 1, ρ(ΦF (.)−V (.)(̟)) < 1, thus s is a negative constant. Therefore, we have X(t) → 0 as
t → +∞.

Thus zero solution of (S.12) is globally asymptotically stable. For any non-negative initial value (I(0), BH(0), BL(0))
T

of the system (S.10), there is a sufficiently large M > 0 such that (I(0), BH(0), BL(0))
T ≤ MX̄(0) holds. Applying

the comparison principle [18], we have (I(t), BH(t), BL(t))
T ≤ MX̄(t), for all t > 0, where MX̄(t) is also a solution

of (S.12). Therefore, we get I(t) → 0, BH(t) → 0 and BL(t) → 0 as t → ∞. Using theory of asymptotic autonomous
systems [19], it follows then S(t) → ΠH

µd
and R(t) → 0 as t → ∞.

Thus E0 is globally asymptotically stable if R0 < 1. �
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Uniform persistence of the disease

We claim the following

Theorem 4 If R0 > 1, the system (S.1) is uniformly persistent, i.e., there exists a positive constant ǫ, such that for
all initial value (S(0), I(0), R(0), BH(0), BL(0)) ∈ {(S, I, R,BH , BL) ∈ R

5
+ : I > 0, BH > 0, BL > 0}, the solution

of (S.1) satisfies lim inft→∞ I(t) ≥ ǫ, lim inft→∞ BH(t) ≥ ǫ and lim inft→∞ BL(t) ≥ ǫ .

Proof: Consider the sets in R
5, X = R

5
+, X0 = {(S, I, R,BH , BL) ∈ R

5
+ : I > 0, BH > 0, BL > 0} and

∂X0 = X\X0.

We define a poincarè map P : X → X , satisfying P (x0) = u(̟, x0), ∀ x0 ∈ X , with u(t, x0) the unique solution
of (S.1) satisfying u(0, x0) = x0.

We first show that P is uniformly persistent with respect to (X0, ∂X0). It is easy to see from the system (S.1)
that X and X0 are positively invariant. Moreover, ∂X0 is relatively closed set in X . It then follows from Theorem
1 that solutions of the system (S.1) are uniformly and ultimately bounded. Therefore, the semiflow P is point
dissipative and compact on X . It follows from Theorem 1.1.3 in [20], there is a global attractor of P that attracts
each bounded set in X .

We define the following set:

M∂ = {(S(0), I(0), R(0), BH (0), BL(0)) ∈ ∂X0 :

Pm(S(0), I(0), R(0), BH (0), BL(0)) ∈ ∂X0,∀m ∈ N ∪ {0}}

We claim that the following

M∂ = {(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0}

We only need to show that, M∂ ⊆ {(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0}.

For any, (S(0), I(0), R(0), BH(0), BL(0)) ∈ ∂X0\{(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0}, if I(0) = 0, BH = 0, BL > 0, it

is clear that S > 0 and BL > 0 for all t > 0, now from second equation of (S.1), we have İ(0) = βH(t) S(0)BL(0)
KL+BL(0) > 0

⇒ I(0) > 0. Thus from fourth equation of (S.1), we have ḂH(0) = ξI(0) > 0. else if I(0) = 0, BL = 0 and
BH > 0 then similarly we can show İ(0) > 0 and ḂH(0) > 0 and similarly for other cases also. Therefore
if (S(0), I(0), R(0), BH(0), BL(0)) /∈ {(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0} then (S(t), I(t), R(t), BH(t), BL(t)) /∈ ∂X0

for sufficiently small t > 0 i.e. for any (S(0), I(0), R(0), BH(0), BL(0)) /∈ {(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0} then
(S(0), I(0), R(0), BH(0), BL(0)) /∈ ∂X0. This implies M∂ ⊆ {(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0} and therefore M∂ =
{(S, 0, R, 0, 0) : S ≥ 0, R ≥ 0}

Clearly, E0 is a fixed point of P in M∂ . If (S(t), I(t), R(t), BH(t), BL(t)) is a solution of (S.1) initiating from
M∂, it then follows from system (S.1) that S(t) → ΠH

µd
, I(t) → 0, R(t) → 0, BH(t) → 0 and BL(t) → 0 as t → ∞.

So any solution of (S.1) initiating in M∂ will remain into M∂.

We will now show that {E0} is an acyclic covering of E0. It is enough to show {E0} isolated invariant subset of
M∂ i.e. W s(E0)

⋂

X0 = ∅, where W s(E0) is the stable set of E0.

Let x0 = (S(0), I(0), R(0), BH(0), BL(0)) ∈ X0, then by the continuity of solution with respect to initial values,
∀ ε ∈ (0, ΠH

µd
), there exits η > 0 such that ∀ x0 ∈ X0 with ‖x0 − E0‖ ≤ η, it follows that ‖u(t, x0) − u(t, E0)‖ ≤ ε,

∀ t ∈ [0, ̟]. To show, x0 ∈ X0 ⇒ x0 /∈ W s(E0), it is enough to show that lim supm→∞ d(Pm(x0), E0) ≥ η
for some m > 0. If not, let ∃x0 ∈ X0 such that lim supm→∞ d(Pm(x0, E0) < η for all m > 0. This implies
‖u(t, Pm(x0))− u(t, E0)‖ < ε, ∀ t ∈ [0, ̟].
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For any t ≥ 0, let t = m̟ + t1, where t1 ∈ [0, ̟] and m = [ t
̟
], which is the greatest integer less than or equal

to t
̟
. Therefore, we have, ‖u(t, Pm(x0))− u(t, E0)‖ = ‖u(t1, Pm(x0))− u(t1, E0)‖ < ε, ∀ t ∈ [0, ̟].

Replacing, u(t, x0) by (S(t), I(t), R(t), BH(t), BL(t)) in above equation, it follows that, ΠH

µd
−ε ≤ S(t) ≤ ΠH

µd
+ε,

0 ≤ I(t) ≤ ε, 0 ≤ R(t) ≤ ε, 0 ≤ BH(t) ≤ ε and 0 ≤ BL(t) ≤ ε for all t ≥ 0. Then we have, S(t)
KH+BH

≥ ( ΠH

µdKH
− ε
KH+ε )

and S(t)
KL+BL

≥ ( ΠH

µdKL
− ε

KL+ε ). Therefore, from system (S.1), we have

dI
dt

≥ βH(t)( ΠH

µdKH
− ε

KH+ε
)BH + βL(t)(

ΠH

µdKL
− ε

KL+ε
)BL

− (γ + µd + µc)I

dBH

dt
= ξI − χBH

dBL

dt
= χBH − δLBL

(S.13)

Set

Mε(t) =

















0 βH(t) ε
KH+ε βL(t)

ε
KL+ε

0 0 0

0 0 0

















.

Again by Lemma 2, we have as R0 > 1 so ρ(ΦF (.)−V (.)(̟)) > 1, choosing ε sufficiently small such that
ρ(ΦF (.)−V (.)−Mε

(̟)) > 1. Again by Lemma 3 and comparison principle [18], there exists a positive ̟-periodic func-

tion f1(t) such that x(t) ≥ f1(t)e
s2t, where x(t) = (I(t), BH(t), BL(t))

T and s2 = 1
̟
ln ρ(ΦF (.)−V (.)−Mε

(̟)) > 0,
which implies that I(t) → ∞, BH(t) → ∞ and BL(t) → ∞, as t → ∞, this is contradiction in M∂ , hence
W s(E0)

⋂

X0 = ∅ and therefore {E0} is an acyclic covering of E0 in M∂. Therefore from Theorem 1.3.1 and Re-
mark 1.3.1 in [20], we obtain that P is uniformly persistent with respect to (X0, ∂X0). Therefore it follows from
Theorem 3.1.1 in [20], that the solution of the system (S.1) is uniformly persistent in X if R0 > 1. �

Existence and global stability of periodic solution of the cholera model (S.1)

We claim the following:

Theorem 5 If R0 > 1, then the system (S.1) have a positive ̟-periodic solution which is globally asymptotically
stable.

Proof: We have already proved in last section that the poincaè map, P : X → X of system (S.1) is point
dissipative and compact and by Theorem 4, P is uniformly persistent with respect to (X0, ∂X0). Then it fol-
lows from Theorem 1.3.6 in [20], that the poincaè map P has a fixed point (S̄, Ī, R̄, B̄H , B̄L)∈ Int(R5

+). Hence
u(t, (S̄, Ī, R̄, B̄H , B̄L))∈ Int(R5

+), ∀ t > 0. Thus (S̄(t), Ī(t), R̄(t), B̄H(t), B̄L(t)) is a positive ̟-periodic solution of
the system (S.1) by the definition of the semiflow P .

Now to prove global stability of the periodic solution (S̄(t), Ī(t), R̄(t), B̄H(t), B̄L(t)) of the model (S.1) we
construct the following Lyapunov function L(t) = |S(t)− S̄(t)|+ |I(t)− Ī(t)|+ |R(t)− R̄(t)|+ µd

ξ
|BH(t)− B̄H(t)|+

µd

ξ
|BL(t)− B̄L(t)|. We use the formula,

|x|′ = sgn(x) x′

to calculate the upper right-hand derivative (Dini’s Derivative) of L(t).
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Therefore,

D+L(t) = sgn(S(t) − S̄(t)){βH (t) B̄H S̄

KH+B̄H

+ βL(t)
B̄LS̄

KL+B̄L
− βH(t) BHS

KH+BH

− βL(t)
BLS

KL+BL
+ ω(R − R̄)− µd(S − S̄)}

+ sgn(I(t) − Ī(t)){βH (t) BHS

KH+BH
+ βL(t)

BLS

KL+BL

− βH(t) B̄H S̄

KH+B̄H
− βL(t)

B̄LS̄

KL+B̄L
− (γ + µc + µd)(I − Ī)}

+ sgn(R(t) − R̄(t)){γ(I − Ī)− (ω + µd)(R − R̄)}

+ sgn(BH (t) − B̄H (t))µd

ξ
{ξ(I − Ī)− χ(BH − B̄H )}

+ sgn(BL(t) − B̄L(t))
µd

ξ
{χ(BH − B̄H )− δL(BL − B̄L)}

≤ −µd|S(t) − S̄(t)| − µc|I(t)− Ī(t)| − µd|R(t) − R̄(t)|

− µdδL
ξ

|BL(t) − B̄L(t)|

(S.14)

Let K = min{µd, µc, δL}, then it follows that

D+L(t) ≤ −K(|S(t)− S̄(t)|+ |I(t)− Ī(t)|+ |R(t) − R̄(t)|
+ |BL(t) − B̄L(t)|)

Which implies that L is non-increasing on [0,+∞). Integrating the above inequality from 0 to t we have,

L(t) +K
∫ t

0
(|S(s)− S̄(s)|+ |I(s)− Ī(s)|+ |R(s) − R̄(s)|

+|BL(s)− B̄L(s)|)ds ≤ L(0) < +∞, ∀t ≥ 0
(S.15)

Thus following Lemma 2.2 in [21], we have, limt→∞ L(t) = 0. Therefore it follows that

limt→∞ |S(t) − S̄(t)| = 0; limt→∞ |I(t) − Ī(t)| = 0; limt→∞ |R(t) − R̄(t)| = 0; limt→∞ |BH(t) − B̄H(t)| = 0;
limt→∞ |BL(t)− B̄L(t)| = 0.

Thus, (S̄(t), Ī(t), R̄(t), B̄H(t), B̄L(t)) is globally attracting.

Now we show that there exists only one ̟- periodic solution of the system (S.1). For any two ̟- periodic
solutions (S̄, Ī, R̄, B̄H , B̄L) and (S̄1, Ī1, R̄1, B̄H1, B̄L1) of the system (S.1), we claim that S̄(t) = S̄1(t); Ī(t) = Ī1(t);
R̄(t) = R̄1(t); B̄H(t) = B̄H1(t) and B̄H(t) = B̄H1(t), for all t ∈ [0, ̟]. If not, then there must be at least one
η ∈ [0, ̟] such that S̄(η) 6= S̄1(η) i.e. |S̄(η)− S̄1(η)| = ε > 0.

Thus we can get

ε = limn→∞ |S̄(η + n̟)− S̄1(η + n̟)|
= limt→∞ |S̄(t)− S̄1(t)| > 0

Which is a contradiction to the fact that (S̄, Ī, R̄, B̄H , B̄L) is globally stable. Therefore S̄(t) = S̄1(t), ∀t ∈ [0, ̟]
and similarly for other cases also. Therefore, S̄(t) = S̄1(t); Ī(t) = Ī1(t); R̄(t) = R̄1(t); B̄H(t) = B̄H1(t) and
B̄H(t) = B̄H1(t), for all t ∈ [0, ̟].

So if R0 > 1, ∃ unique ̟-periodic solution of the system (S.1) which is globally asymptotically stable. �
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Cholera model with different interventions strategies

We consider four different interventions in the model (S.1) to reduce cholera burden namely, (i) Hand-hygiene pro-
motion & clean water supply, (ii) Vaccination, (iii) Treatment using Antibiotic and oral rehydration therapy, and
(iv) Construction and promotion of Sanitation.

Following the assumptions given in the section Model with different cholera interventions in the main
text, we have the following cholera model with different interventions:

dS
dt

= ΠH + ωR + ǫV − (1− θ(t))[βH (t) BHS

KH+BH
+ βL(t)

BLS

KL+BL
]

− p(t)σS − µdS

dI
dt

= (1 − θ(t))[βH (t) BHS

KH+BH
+ βL(t)

BLS

KL+BL
]

− (µd + µc + (1 − α(t))γ + α(t)γλ)I

dV
dt

= p(t)σS − ǫV − µdV

dR
dt

= ((1 − α(t))γ + α(t)γλ)I − (ω + µd)R

dBH

dt
= (1 − s(t))(ψα(t) + (1− α(t)))ξI − χBH

dBL

dt
= χBH − δLBL

(S.16)

The description of the interventions parameters of the model (S.16) and their interpretations are given in the
Table S2.

Optimal control strategy

In order to minimize the control objective function J(θ, p, α, s) (see main text Equation 15), we apply Pon-
tryagin’s Maximum Principle [22] that allow us to study our state system S.16 to our control objective function.
Fleming and Rishel (1975)[23], first showed that this principle can be used to obtain the differential equations for
the adjoint variables, corresponding boundary conditions and the characterization of an optimal control estimates
θ∗(t), p∗(t), α∗(t) & s∗(t). This characterization gives a representation of an optimal control in terms of the state
and adjoint functions. Also, this principle converts the problem of minimizing the objective functional subject to
state system into minimizing the Hamiltonian with respect to the controls (bounded measurable function) at each
time t.

Forming the Hamiltonian, H , we have

H = AµcI(t) + Bp(t)S(t) + Cp2σ +Dα(t)I(t) +Eα2(t) + Fθ(t)

+ Gθ2(t) +Hs(t) +Ks2(t) + λS [ΠH + ωR(t)

− (1− θ(t)){βH (t) BH(t)S(t)
KH+BH(t)

+ βL(t)
BL(t)S(t)
KL+BL(t)

}+ ǫV (t)

− p(t)σS(t) − µdS(t)] + λI [(1− θ(t)){βH (t)
BH (t)S(t)
KH+BH(t)

+ βL(t)
BL(t)S(t)
KL+BL(t)

} − {µd + µc + (1− α(t))γ + α(t)γλ}I(t)]

+ λV [p(t)σS(t) − ǫV (t) − µdV (t)]

+ λR[{(1 − α(t))γ + α(t)γλ}I(t) − (ω + µd)R(t)]

+ λBH [(1− s(t)){ψα(t) + (1− α(t))}ξI(t) − χBH (t)]

+ λBL[χBH(t) − δLBL(t)]

(S.17)
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where λS , λI , λV , λR, λBH and λBL are adjoint functions associated with their respective states. First term in
the Hamiltonian H comes from the integrand of the control objective functional (see main text Equation 15)
and remaining terms are product of each adjoint function with the right-hand side of the differential equation of its
corresponding state function.

Given an optimal control estimates (θ∗(t), p∗(t), α∗(t), s∗(t)) and corresponding states (S∗, I∗, V ∗, R∗, B∗
H , B∗

L),
there exist adjoint functions satisfying following system of equations:

dλS

dt
= p(t)(σλS − σλV −B) + (1− θ(t))[βH (t) BH

KH+BH

+ βL(t)
BL

KL+BL
](λS − λI) + λSµd

dλI

dt
= (λI −A)µc + (λI − λR){(1 − α(t))γ + α(t)γλ}

+ λIµd −Dα(t) − λBH (1 − s(t))ξ{ψα(t) + (1 − α(t))}

dλV

dt
= ǫ(λV − λS) + λV µd

dλR

dt
= ω(λR − λS) + λRµd

dλBH

dt
= (λS − λI )(1 − θ(t))

βH(t)KHS

(KH+BH)2
+ χ(λBH − λBL)

dλBL

dt
= (λS − λI )(1 − θ(t))

βL(t)KLS

(KL+BL)2
+ δLλBL

(S.18)

with final time boundary conditions

λS(T ) = 0, λI(T ) = 0, λV (T ) = 0, λR(T ) = 0, λBH(T ) = 0, λBL(T ) = 0.

Note that, dλS

dt
= −∂H

∂S
and similarly for the other adjoint differential equations. The final time boundary

conditions are zero since there is no dependence on the states at the final time in the objective functional.
Optimal control estimates are characterized as follows:

θ∗(t) = max(0,min(θ̂(t), θmax))

p∗(t) = max(0,min(p̂(t), pmax))

α∗(t) = max(0,min(α̂(t), αmax))

and
s∗(t) = max(0,min(ŝ(t), smax))

where values of θmax, pmax, αmax and smax are given in Table S2. Expression of θ̂(t), p̂(t), α̂(t) and ŝ(t) given as
follows:

θ̂(t) =
F+(λS−λI ){

βH (t)BHS

KH+BH
+

βL(t)BLS

KL+BL
}

(−2G) .

p̂(t) = (λV −λS+B)S(t)
(−2C) .

α̂(t) = [λRγ(λ−1)+D−λIγ(λ−1)−λBH(1−s(t))ξ(1−ψ)]I(t)
(−2E) .

ŝ(t) = H−λBH{ψα(t)+(1−α(t))}ξI(t)
(−2K) .

(S.19)

Note that θ̂(t) comes from ∂H
∂θ

= 0, similarly for other controls.
The state system of differential equations (S.16) and the adjoint system of differential equations (S.18) together

with the control characterizations (S.19) is solved numerically in MATLAB 7.11.0 (R2010b) using the method of
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steepest decent [24].

The optimal cost-effective study in Zimbabwe, from the period end of epidemic in 2008-09 to January 1, 2012,
(see, Tables 8 and 9 in main text) suggests that the vaccination coverage to control cholera epidemics may be a
suitable option provided it is applied with the combinations of other interventions. This result agrees with the point
made in a recent analysis [25] to control cholera epidemic in Haiti using vaccination. Higher values of the cost per
case reduction (see, Table 9 in main text) is needed if vaccination is applied alone, made the vaccination strategy
as an impractical control strategy.

In terms of case reduction among single interventions, hand-hygiene & clean water distribution is the most
effective intervention. It reduces the most number of cases and deaths among single interventions in each province
in Zimbabwe during the projected intervention period i.e. the end of epidemic in 2008-09 to January 1, 2012, (see,
Tables 5 and 6 in main text). This result is in good agreement with the observation of Andrews and Basu [26],
where they argued that hand-hygiene & clean water distributions will avert more cases and deaths than treatment
and vaccination during the epidemic in Haiti. Hand-hygiene & clean water distribution is found to be the most
cost effective among single interventions in those provinces (Harare, Mashonaland West, Manicaland, Matabele-
land South and Matabeleland North) where slow transmission is a dominating factor for cholera transmission (see
Table 9 in main text and Table S3). Thus, the region where environmental factors play the key role in cholera
transmission, hand-hygiene & clean water distribution may be the most cost effective intervention there.

Treatment as an individual control has turned out to be the most cost effective among different single interven-
tions in the provinces Mashonaland Central, Mashonaland East, Midlands and Masvingo (see Tables 8 in main
text). This result is in well agreement with the previous observation of Naficy et. al. [27] on the control of cholera
in sub-Saharan refugee settings. The provinces where treatment is found to be most cost effective one under the
dominance of hyper-infectious cholera transmission (see Table S3). This result can be very helpful for policy makers
to choose a particular intervention during a cholera epidemic in a particular region.

Sanitation as a single intervention performed better than vaccination. However, in terms of cost-effectiveness
and cases & death’s reduction, it is found to be less effective than hand-hygiene & clean water distribution and
treatment in most of the provinces in Zimbabwe (see Tables 5, 6 and 8 in main text). Cost per averted case
of sanitation in most of the provinces is found to be higher than hand-hygiene & clean water distribution and
treatment (see Table 9 in main text). Thus, sanitation is a moderate cholera intervention which performs better
than vaccination but less effective than hand-hygiene & clean water distribution and treatment.

Individual cost of hand-hygiene & clean water distribution, vaccination and sanitation are significantly reduced
when applied with treatment. This reduction is almost one order in magnitude for most of the provinces for hand-
hygiene & clean water distribution and sanitation. For vaccination, this reduction is one order in magnitude for
Mashonaland Central, Mashonaland East, Midlands and Masvingo (see, Table 8 in main text). Two order in
magnitude for Harare, Matabeleland South and three order in magnitude for Mashonaland West and Manicaland
(see, Table 8 in main text). Significant amount of cost is reduced when vaccination is applied with hand-hygiene
& clean water distribution and Sanitation; one order in magnitude for Mashonaland Central, Mashonaland East,
Midlands and Masvingo; two order in magnitude for Harare, Mashonaland West and Matabeleland South and three
order in magnitude for Manicaland (see, Table 8 in main text).
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