
Supplementary Text

1 Mechanical model of cell indentation by atomic force

microscopy

The following paragraphs briefly summarize how to extract tension T0 and area compressibility
KA from indentation experiments based on the theory published by Sen et al. (Biophys. J.,
2005, 89, 3203-3213.).

1.1 Parameterization of the cell’s shape

In this section we outline how to assess the cellular shape during indentation with a conical
indenter. Adhesion of cells to the surface leads to shapes that can best be described as capped
spheres with contact angles around φ0 = 60 ◦. We consider the cell as an isotropic elastic shell
that produces a restoring force in response to indentation with a conical indenter originating
from two sources, linear elasticity due to area dilatation at large strains and and pre-stress
(constant tension) stored in the membrane and actin cortex. Tension of the cortex/membrane
composite is mainly generated by active elements (actomyosin), adhesion to the surface and
interaction of the plasma membrane with the cytoskeleton mediated by, for instance ERM
proteins. Bending, however, plays a minor role and is therefore neglected in the following
theoretical description. The tension of the plasma membrane can be written as:

T = T0 +Ka
A− A0

A0

, (1)

in which T0 comprises cortical tension Tc of the actomyosin cortex, and Tt the membrane
tension including elements of adhesion to the cytoskeleton and in–plane tension of the mem-
brane.

T0 = Tc + Tt, (2)

KA is the area compressibility modulus of the plasmamembrane, ∆A = Acl − A0 is the
difference between the actual area Acl after compression and the initial area prior to compression
A0. Static equilibrium can be expressed by the Young-Laplace equation, which describes the
pressure difference across the fluid interface, which is the pressure difference between interior
and exterior of the cell as a function of surface tension T and mean curvature H = 1

2

(
1
Rm

+ 1
Rφ

)
.

Rm and Rφ denote the meridional and circumferential radii of curvature at any point in the
membrane.

∆P = 2TH (3)
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Assuming a constant curvature of the free membrane justified by a constant hydrostatic pressure
difference and a constant isotropic tension, we arrive at

2H =
du

dr
+
u

r
, (4)

where u = sin β. β denotes the angle between the surface normal to the vertical axis.
Equation (4) is solved for the following boundary conditions (see scheme 1 for definition of
parameters):

β = −Θ, r = r1 (5)

β = φ, r = R1 (6)

The shape function u can be written as:

u = C1r +
C2

r
, (7)

with

C1 =
R1 sin(φ) + r1 sin(Θ)

R2
1 − r21

(8)

C2 = −C1r
2
1 − r1 sin(Θ) (9)

1.2 Force acting on the cantilever

Force equilibrium at the base provides a mean to access force as a function of φ and r1:

πR2
1∆P = F +

∫ 2πR1

0
T sin(φ) dl (10)

πR2
1∆P = F + 2πR1 sin(φ)T (11)

πR2
1T2H = F + 2πR1 sin(φ)T (12)

(13)

with

2H =
du

dr
+
u

r
= 2C1, (14)

and eventually
F = 2πT (R2

1C1 −R1 sin(φ)) (15)

1.3 Computation of the cellular shape as a function of indentation
depth

The task is now to determine φ and r1, which constitute essentially the shape of the indented
cell. Therefore, we assume that the volume of the cell is preserved during the indentation
process. The volume can be computed from the shape as a function of indentation depth:

V =
∫ R1

r1
πr2

(C1r − C2

r
)√

1− (C1r + C2

r
)2

dr − πr31
3 tan(Θ)

(16)
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and be set equal to the volume of the cell prior to indentation (shape of a spherical cap):

V = (3R0 − h)
πh2

3
, (17)

with h the height of the cell according to scheme 1 (note that R0 = R1/sin(φ0)):

h = R0 −
√
R2

0 − h. (18)
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Scheme 1: An adherent cell represented by a spherical cap (dotted line) subject to indentation using a conical
indenter (continuous line). The indenter is shown in red. Illustration of mechanical parameters used in the
mechanical tension model.

The tension T , however, is not constant but increases with area dilatation. Assuming a 2-D
Hookean solid we arrive at:

T = T0 +Kaα, (19)

with

α =
∆A

A0

(20)

α denotes the area dilatation with A0, the area prior to indentation The actual area Acl can
be readily obtained by solving the integral

Acl =
∫ R1

r1

2πr√
1− (C1r + C2

r
)2

dr +
πr21

sin(Θ)
(21)

The two non-linear equations (15,16) are solved numerically for [r1, φ] using the function
fsolve from MATLABTM which finds a root of a system of nonlinear equations employing the
Levenberg-Marquardt algorithm. The z -position of the AFM–tip at r = r1 is calculated from

dz = dr tan(β), (22)

dz =
u√

1− u2
. (23)

Integration provides the height z(r1):
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z(r1) =
∫ r1

0

u√
1− u2

dr (24)

that allows us to determine the indentation depth δ:

z0 = z(r1)− r1 tan(Θ); (25)

δ = h− z0, (26)

δ = h−
∫ r1

0

u√
1− u2

dr + r1 tan(Θ), (27)

The procedure allows to obtain F (δ) curves by computing the shape of the cell parameterized
by r1 and φ.
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