Document S2. Sensitivity analysis of asymmetrical confidence intervals

We conducted a three-part sensitivity analysis, in each part of which one of the three values would be replaced by a value imputed from the other two, assuming interval symmetry. With $\ln R R$ as the natural \log of the point estimate, lnLO as the natural \log of the lower limit and $\ln \mathrm{UP}$ as the natural \log of the upper limit:
a. imputed $\ln R R=0.5(\ln U P+\ln L O)$
b. imputed $\ln L O=\ln R R-(\ln U P-\ln R R)=2(\ln R R)-\ln U P$
c. imputed $\ln U P=\ln R R+(\ln R R-\ln L O)=2(\ln R R)-\ln L O$

We then re-ran the analysis with each calculated estimate and 95\% CI to examine if and how the summarized random effects estimate and 95% CI change, for the appropriate time period.

Mutevedzi 2011a-3-month estimate

Iteration	Calculated estimate $\mathbf{(9 5 \%} \mathbf{C I})$	Resulting summary effect estimate $\mathbf{(9 5 \%} \mathbf{C I})$
Asymmetrical interval:	$1.59(0.84,1.97)$	$1.10(0.87,1.40)$
a. imputed $\ln R R=0.5[\ln (1.97)+\ln (0.84)]=0.25$	$1.29(0.84,1.97)$	$1.07(0.87,1.32)$
b. imputed $\ln \mathrm{LO}=2 \ln (1.59)-\ln (1.97)=0.25$	$1.59(1.28,1.97)$	$1.13(0.87,1.47)$
c. imputed $\ln \mathrm{UP}=2 \ln (1.59)-\ln (0.84)=1.10$	$1.59(0.84,3.01)$	$1.07(0.85,1.36)$

Boulle 2008b - 6-month estimate

Iteration	Calculated estimate $\mathbf{(9 5 \%} \mathbf{C I})$	Resulting summary effect estimate $\mathbf{(9 5 \%} \mathbf{C I})$
Asymmetrical interval:	$0.8(0.5,1.1)$	$1.15(0.94,1.41)$
a. imputed $\ln R R=0.5[\ln (1.1)+\ln (0.5)]=-0.30$	$0.7(0.5,1.1)$	$1.14(0.92,1.42)$
b. imputed $\ln \mathrm{OO}=2 \ln (0.8)-\ln (1.1)=-0.54$	$0.8(0.6,1.1)$	$1.14(0.93,1.40)$
c. imputed $\ln U P=2 \ln (0.8)-\ln (0.5)=0.25$	$0.8(0.5,1.3)$	$1.16(0.94,1.42)$

Though asymmetry is possibly due to rounding, not error.
Nguyen 2011-60-month estimate

Iteration	Calculated estimate $\mathbf{(9 5 \%} \mathbf{C I})$	Resulting summary effect estimate $(\mathbf{9 5 \%} \mathbf{C I})$
Asymmetrical interval:	$2.9(1.6,10.5)$	$1.33(1.02,1.75)$
a. imputed $\ln R \mathrm{R}=0.5[\ln (10.5)+\ln (1.6)]=1.41$	$4.1(1.6,10.5)$	$1.37(1.05,1.79)$
b. imputed $\ln \mathrm{LO}=2 \ln (2.9)-\ln (10.5)=-0.22$	$2.9(0.8,10.5)$	$1.33(1.02,1.72)$
c. imputed $\ln \mathrm{UP}=2 \ln (2.9)-\ln (1.6)=1.66$	$2.9(1.6,5.3)$	$1.38(1.06,1.80)$

