Technical details of the SVM Method

Because there is no analytical method to determine an appropriate 
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to solve this quadratic programming problem, Lagrange dual function and multipliers (denoted by 
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 and 
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) are used to solve this problem [13]. To minimize the objection function with the constraints in equation (2), we use the Lagrangian:
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where {
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} are Lagrange multipliers. The corresponding set of Karush-Kuhn-Tucker (KKT) conditions are given by 
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, where n = 1,…, N. Then, we optimize w, b, and {
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}, making use of the definition (2) of
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Using these results to eliminate w, b, and {
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} from the Lagrangian, we obtain the dual Lagrangian in the form
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where 
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is the positive semidefinite kernel function. 

To determine the constraints, we note that 
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 is required because we are dealing with Lagrange multipliers. Equation (15) together with 
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. Therefore, equation (16) must be minimized with respect to the dual variables {
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}, subject to
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for n = 1,…, N, where equation (17) is known as the box constraint. This situation again represents a quadratic programming problem. If we substitute equation (13) into equation (1), we obtain predictions for new data points, by using 
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We can now interpret the resulting solution. As before, a subset of the data points may have 
[image: image30.wmf]0

j

a

=

, in which case they do not contribute to the predictive model (19). The remaining data points constitute the support vectors. These data have 
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, they must satisfy
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If 
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, then equation (15) implies that 
[image: image35.wmf]0

j

b

>

, which from 
[image: image36.wmf]0

jj

bx

³

 requires 
[image: image37.wmf]0

j

x

=

 and, hence, such points lie on the margin. Points with 
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 lie inside the margin and are either correctly classified if 
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To determine the parameter b in equation (1), we note that those support vectors for which 
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 and, hence, will satisfy
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Again, a numerically stable solution is obtained by averaging, yielding:
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where M denotes the set of indices of data points having 
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The positive semidefinite kernel function,[image: image48.png]K(x;, %) = o(x)To(x,)
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, which can be substituted for a nonlinear feature-space transformation. For example, the commonly used radial-basis function kernel [27] is defined as: 
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where 
[image: image53.wmf]g

 is a kernel parameter, 
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 Thus, the estimated target value 
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 is obtained as follows:
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