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Supporting Information: Quasi-stationarity

In this section, we illustrate the central importance of the quasi-stationarity assumption for the accuracy
of the WKB expression for the mean-extinction time. For this, we numerically compute solutions to the
master equation for the constrained SIS model without treatment (Model 1 with g = 0), and determine
when the WKB condition NSopt � 1 holds and when it does not by comparing the outcome with the
WKB results.

In the normalized constrained variables where x1+x2 = 1 (i.e., no fluctuations in the total population),
the Hamiltonian takes the form:

H(x2, p2) = βx2(1− x2)(ep2 − 1) + (µ+ κ)x2(e−p2 − 1). (1)

The Hamiltonian system under the constraint H(x2, p2) = 0 has the steady states

(x2e, p2e) =

(
1− 1

R0
− νg

β
, 0

)
(2)

and (x20, p20) = (0,− lnR0), which denote the endemic and extinct states, respectively. The system
also possesses a third steady state (x2m, p2m) = (0, 0). The attracting states (x2e, p2e) and (x2m, p2m)
correspond to the zero fluctuation states that exist in the mean field equation (deterministic system).
Since there is a nonzero probability current at the extinct state, (x20, p20) is a new state created by the
noise in the system. We also note that for finite populations noise is not generally known due to the
random interactions of individuals. However, in this model, the noise-free extinct state is accessible if
the noise is known to be Gaussian.

The most probable path from the endemic to the extinct point is the heteroclinic trajectory connecting
the fixed point (x2e, p2e) with the fluctuational extinction point (x20, p20). The optimal path is given by
p2(x2) = − ln(R0(1− x2)). Therefore, the action from the endemic state to a point x2 along the optimal
path up to the zeroth order of N is

S(x2) =

∫ x2

R0−1
R0

− ln(R0(1− x′2)) dx′2. (3)

In particular, the action from the endemic state to the extinct state along the optimal path is

Sopt = S(0) = −1 + ln(R0) +
1

R0
. (4)

Since R0 > 1, for sufficiently large N we have NSopt � 1, ensuring the extinct point lies in the tail of
the probability distribution, where its value ρ(0) = Ae−NSopt is exponentially small.

In Figure S1, the WKB approximations to the quasi-stationary distribution are shown for the cases of
R0 = 2 and R0 = 1.1. The value of the distribution at zero shows that the extinction point is definitely
not in the tail of the distribution for R0 = 1.1 and hence does not constitute a rare event. In contrast,
for R0 = 2, the extinct state is in the tail of the distribution and hence we expect the WKB result to be
accurate.

Because the disease free equilibrium is always an absorbing boundary in the one-dimensional case,
the system decays to the extinct state in the long term. If a quasi-stationary distribution exists, the
complete decay happens for exponentially long times; otherwise, it occurs on a much shorter time-scale.
To illustrate this phenomenon, we show the numerical solution of the master equation over time in Figure
S2. The initial probability distribution at t = 0 is set to the WKB approximation of the SIS probability
distributions using Eq. (3). The absorption into the disease-free state is apparent in the R0 = 1.1 case
(panel b), but completely imperceptible for R0 = 2 (panel a) over the time-scale shown.


