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Mathematical formulation of the model
We define again the equations for juveniles in the matrix, J, and for adults in the
forest fragment, A:

∂J
∂ t

= DJ
∂ 2J
∂x2 −µJJ (S.1)

∂A
∂ t

= DA
∂ 2A
∂x2 −µAA , (S.2)

where DJ and DA are the diffusion coefficients for juveniles in the matrix and for
adults inside the forest, and µJ and µA the respective mortality rates. For this
system, we define boundary conditions considering that juveniles become adults
when they reach the fragment (Eqs. (S.3) and (S.4)). Since adults do not become
juveniles, that border is completely absorbing to the juvenile population:

J
∣∣
x=L1

= 0 . (S.3)

We must also observe that the flux of adults that enter the fragment must be
the same as the flux of juveniles leaving the matrix, so that

DA
∂A
∂x

∣∣∣∣
x=L1

= DJ
∂J
∂x

∣∣∣∣
x=L1

. (S.4)

Further, at the fragment border, several scenarios are possible according to the
landscape beyond: (i) the boundary may be completely absorbing, if there is a
very hostile matrix for x > L2, or (ii) totally reflexive, if the environment is as
good as in the fragment, or (iii) it can be something in between. This point yields
the third condition:

−DA
∂A
∂x

∣∣∣∣
x=L2

= bA
∣∣∣∣
x=L2

, (S.5)

where b defines how reflexive or absorbing the border at x = L2 is. When b = 0
means that the patch is large, and it is used to avoid size effects of habitat patch.
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The fourth boundary condition deals with the reproductive behavior of the
amphibians. The population of juveniles generated at the river at time t is propor-
tional to the total number of adults in the fragment at an earlier time t − t1. To
control the population size we include a saturation parameter K, that considers the
intraspecific competition at the river. Then, we have:

−DJ
∂J
∂x

∣∣∣∣
x=0

=
rN

1+ r
K N

, (S.6)

where r is the recruitment of new individuals and N is the total adult population
at the fragment in a previous time t1 given by:

N =
∫ L2

L1

A(x, t− t1)dx . (S.7)

This model has the diffusive behavior of juveniles crossing the matrix search-
ing for the fragment and the advective movement of adults during their return to
the river to mate and reproduce. The condition (S.6) introduces two important
phenomenological constants r and t1. The first is the recruitment depending on
the fertility of adults, the survival of tadpoles and the adult mortality in the ma-
trix. The second, t1, is the sum of the time expent by adults to cross the matrix,
mate, reproduce, plus the time to mature eggs and develop juveniles capable of
crossing the matrix.

Derivation of the stationary solution
The model equations (1 and 2), along with the boundary conditions (3, 4, 5
and 6), are studied qualitatively through the analysis of fixed points, namely,
through stationary solutions, which do not depend on time, thus A(x, t) = A∗(x)
and J(x, t) = J∗(x). In this case, we have that ∂J/∂ t = 0 and ∂A/∂ t = 0, leading
to equations (8 and 9):

DJ
d2J
dx2 = µJJ

DA
d2A
dx2 = µAA .

The solution yields equation (10):J(x) = c1e
√

µJ
DJ

x
+ c2e

−
√

µJ
DJ

x

A(x) = f1e
√

µA
DA

x
+ f2e

−
√

µA
DA

x
,
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where the constants c1, c2, f1 and f2 from integration are fixed by the boundary
conditions, that do not depend on time:

J
∣∣
x=L1

= 0 (S.8)

DJ
∂J
∂x

∣∣∣∣
x=L1

= DA
∂A
∂x

∣∣
x=L1

(S.9)

−DA
∂A
∂x

∣∣∣∣
x=L2

= bA
∣∣∣∣
x=L2

, (S.10)

−DJ
∂J
∂x

∣∣∣∣
x=0

=
rN

1+ r
K N

(S.11)

Using the boundary condition (S.10), we find

f2 = f1e
2
√

µA
DA

L2

(√
µADA +b√
µADA−b

)
, (S.12)

with β = (b+
√

µADA)/(b−
√

µADA), we rewrite :

f2 =− f1e
2
√

µA
DA

L2
β , (S.13)

From equation (S.8)

c1 =−c2e
−2
√

µJ
DJ

L1 ,

then, from equation (S.9), we obtain c1 and c2 as functions of f1:

c1 = f1

√
µADA√
µJDJ

e
−
√

µJ
DJ

L1e
√

µA
DA

L2

(
e
−
√

µA
DA

s
+βe

√
µA
DA

s
)

2
(S.14)

c2 =− f1

√
µADA√
µJDJ

e
√

µJ
DJ

L1e
√

µA
DA

L2

(
e
−
√

µA
DA

s
+βe

√
µA
DA

s
)

2
, (S.15)

where s = L2−L1 is the fragment size.
Calculating N as function of f1:

N =
∫ L2

L1

A(x) dx =
∫ L2

L1

f1e
√

µA
DA

L2

[
e
−
√

µA
DA

(L2−x)−βe
√

µA
DA

(L2−x)
]

dx

= f1

√
DA

µA
e
√

µA
DA

L2

(
1− e

−
√

µA
DA

s
+β −βe

√
µA
DA

s
)

, (S.16)
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then, using the condition (S.11):

f1 =
K

√
µADAe

√
µA
DA

L2

×

{
µA

r

[
β

(
e
√

µA
DA

s−1
)
+ e
−
√

µA
DA

s−1
]−1

−

[
cosh

(√
µJ

DJ
L1

)(
βe
√

µA
DA

s
+ e
−
√

µA
DA

s
)]−1

}
. (S.17)

Substituting Eq. (S.17) into Eqs. (S.13), (S.14) and (S.15), all integration constants
are specified as function of the model parameters. Consequently, one is able to
write the stationary solution J∗(x) and A∗(x) in terms of the model parameters.

Existence and stability of the stationary solution
From the biological perspective, the stationary solutions shown in the previous
section are significant only if their values are positive for all x. It means that
J∗(x) > 0 and A∗(x) > 0. Since it can be shown that the condition for positive
stationary solution at any x yields the same results, we consider the particular case
x = 0, to derive conditions for our model to satisfy:

J∗(0)> 0 . (S.18)

Thus, taking x = 0 in equation (10) leads to

c1 + c2 > 0 , (S.19)

which is satisfied if, and only if

r

µA cosh
(√

µJ
DJ

L1

)
1− 1+β

βe
√

µA
DA

s
+ e
−
√

µA
DA

s

> 1 . (S.20)

In the case where the fragment border at x = L2 is completely absorbing, one has
b = 0 and β =−1, so the condition (S.20) for population persistence becomes:

r > µA cosh
(√

µJ

DJ
L1

)
, (S.21)

One can easily see that as L1 → 0, cosh
(√

µJ
DJ

L1

)
→ 1, it shows immediately

that in the case where there is no split, the population persistence is possible if r
satisfies

r > µA , (S.22)
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which is a known result for population dynamics.
Further, the stability around the trivial solution J = A = 0 turns out to be un-

stable, once the stationary solution becomes positive and stable. Therefore, the
conditions for stability (S.20) and (S.21) found above are also valid to analyse
this particular case.
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