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In this supporting information, more details on the random walk model of first order (RW1-model)
are given. The model is explained, and choices of the prior distribution for all parameters can be found.

Random Walk Model of First Order

Assume that in week i the number of new ILI cases yi is negatively binomial distributed, yi ∼ NegBin(αi, τ).
The τ is often referred to as the dispersion parameter. The mean and variance of yi are µi = τ(1−αi)/αi
and σ2

i = µi(1 + µi/τ), respectively. Assume that the mean µi is modeled as µi = Ei exp(ηi), where
Ei represents the known offset in week i and ηi is a linear predictor. The offset Ei is chosen equally to
the number of active participants in week i. The linear predictor ηi is modeled as ηi = β0 + δi, where
β0 represents the intercept and δ = (δ1, ..., δT )′ are time-specific parameters that follow a random walk
model of first order. The latter model assumes that the differences between two adjacent parameters
follow a multivariate normal distribution with a mean of zero. This results in the following distribution
for δ [1]:

π(δ|σ2
δ ) ∝ exp

(
− 1

2σ2
δ

T∑
t=2

(δt − δt−1)2

)

= exp

(
− 1

2σ2
δ

δ′Rδδ

)
,

where σ2
δ is an unknown variance parameter and Rδ is a structured matrix of the form given by
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A Bayesian approach is taken, and the following uninformative priors are chosen for the unknown pa-
rameters:

log(σ2
δ ) ∼ LogGamma(1, 0.001),

π(β0|ν1) ∼ N (0, ν−11 ) with ν1 = 0.001,

π(τ |ν2) ∼ N (0, ν−12 ) with ν2 = 0.001.

This model is fitted using approximate Bayesian inference by integrated nested Laplace approxima-
tions (INLA) [2]. This method yields very good approximate Bayesian inference in structured additive
regression models with latent Gaussian fields. A major advantage of INLA is that it returns accurate
parameter estimates in a short computational time. Models were fit in R version 2.14 using the INLA

package [3].
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