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1 The two-player performance-enhancing drug game as

a special case

In this section, we show how the multi-player doping game can be parametrised to reproduce the
original two-player doping game of [1]; that is, we will check if the expanded model described in
the Model set-up section of the main manuscript is able to regenerate the original performance-
enhancing drug game in [1].

In order to mimic this model, we will need to assign correct values to the new set of
parameters. It can be shown easily that the following parametrisation leads to this objective:

n = 2, a1 = a, a2 = 0, r1 = r2 = r and c1 = c2 = c (S1)

Given the parametric assumptions of Equation (S1), the variable d may take three values;
0, 1, or 2. If d = 0, nobody takes drugs and the expected payoff of players can be computed as:

ΠNDi =
1

2− 0

2∑
j=0+1

aj =
1

2
(a + 0) =

1

2
a (S2)

In the case of two drug takers (d = 2), the expected payoff of players takes the form:

ΠDi =
1

2

2∑
j=1

aj − rici =
1

2
a− rc (S3)

If d = 1, one player is “clean” while the other takes drugs. In this situation the payoff of
the cheater becomes:

ΠDi =
1

1

1∑
j=1

aj − rici = a− rc (S4)

while the payoff of the player that stays clean is:

ΠNDi =
1

2− 1

2∑
j=1+1

aj = 1 · 0 = 0 (S5)
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Now, comparing the results of (S2), (S3), (S4) and (S5) with the original pay-off structure
of [1] a perfect correspondence is readily observed. (See Figure S1)

Consequently, our extended multi player model is shown to represent the two-player case
correctly.

2 Proofs of Theorems in the main manuscript

Let us start from the expected payoff of player i when he cheats with probability pi. Let D(i)

denote the number of players taking doping, not counting player i itself (note that this is a
random variable). The payoff function is then:

Πi = pi

(
n−1∑
d=0

P(D(i) = d)

∑d+1
i=1 ai
d + 1

− rici

)
+ (1− pi)

(
n−1∑
d=0

P(D(i) = d)

∑n
i=d+1 ai

n− d

)

where Ad =
∑d

i=1 ai
d

is the average prize received by a player that cheated if there are d cheaters

in total, and Ād =
∑n

i=d+1 ai
n−d is the average prize received by players that played fair. By applying

these definitions, the expression can be simplified as:

Πi = pi

(
n−1∑
d=0

P(D(i) = d)Ad+1 − rici

)
+ (1− pi)

(
n−1∑
d=0

P(D(i) = d)Ād

)

= pi

n−1∑
d=0

P(D(i) = d)
(
Ad+1 − Ād

)
− pirici + const.

Taking the derivative:

∂Πi

∂pi
=

n−1∑
d=0

P(D(i) = d)
(
Ad+1 − Ād

)
− rici (S6)

Since pi is constrained to the range [0; 1], the condition for a Nash equilibrium is that for
each player, exactly one of the following three cases must hold:

1. ∂Πi

∂pi
= 0 and 0 ≤ pi ≤ 1

2. ∂Πi

∂pi
> 0 and pi = 1

3. ∂Πi

∂pi
< 0 and pi = 0

Note that if we expand the sum in the derivative and spell out the P(D(i) = d) probabilities
exactly, we would find that the derivative of Πi w.r.t. pi depends only on pj where j 6= i, and
their form is equivalent apart from the indices of the pi’s involved. Therefore, when we evaluate
combinations of the three conditions outlined above, we only have to decide how many players
will be treated according to the first, second or third conditions, without loss of generality.

Theorem 1. Given an instance of the n-player doping game, a common rc product for all
players, and a linear prize structure (i.e. a common b = a1 − a2), the Nash-equilibria are as
follows:

1. Everyone cheats when rc < n−1
2
b.
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2. Everyone plays fair when rc > n−1
2
b.

3. Any pure or mixed strategy when rc = n−1
2
b.

Proof. When the prize structure is linear, we know that a1 − a2 = a3 − a2 = . . . , and that
ai = a1 − (i− 1)b where b is defined as a1 − a2. This implies that

Ak =

∑k
i=1 ai
k

= a1 −
b

k

k−1∑
i=1

i = a1 −
b(k − 1)

2

Āk =

∑n
i=k+1 ai

n− k
= a1 −

b

n− k

n−1∑
i=k

i = a1 −
b(n− k + 1)

2

Ak+1 − Āk = b
n− 1

2

The general derivative in Equation (S6) is then simplified to:

∂Πi

∂pi
=

n−1∑
d=0

P(D(i) = d)b
n− 1

2
− rc = b

n− 1

2
− rc

It is now clear that the derivatives are independent of i, i.e. they are the same for all
the players. The derivatives are zero when rc = bn−1

2
, and since this constraint imposes no

restriction on the probabilities, it follows that any pure or mixed strategy is a Nash equilibrium
when rc = bn−1

2
and the prize structure is linear. rc < bn−1

2
implies a positive derivative

for every player, leading to a situation where everyone cheats. Similarly, rc > bn−1
2

yields a
negative derivative and everyone will play fair.

Theorem 2. Given an instance of the n-player doping game and a common rc product for all
players, the sufficient and necessary condition for the “k players cheat and n− k players play
fair” pure strategy to be a Nash-equilibrium is as follows:

Ak+1 − Āk ≤ rc ≤ Ak − Āk−1

where An+1 and Ā−1 are defined to be −∞.

Proof. Without loss of generality, let us assume that players 1, 2, . . . , k cheat and the rest play
fair. When we are in a Nash equilibrium and k players cheat with probability 1, this means
that k players have no incentive for switching their strategy because their payoff function is
locally maximal. Similarly, for the remaining n − k players, they also have no incentive to
switch because their payoff function is locally maximal. If there were no limits on the range of
pi (i.e. the probability of cheating), the equations were as follows:

∂Πi

∂pi
= 0 for every i

This means that the derivatives of the payoff function are zeros for everyone. However, since
pi is bounded from above by 1 and from below by zero, the derivative of the payoff function of
cheaters may actually be larger than or equal to zero, where being larger means that the player
would try to cheat even more frequently if that were possible. A similar train of thought shows
that the derivative of the payoff function of non-cheaters may actually be smaller than or equal
to zero, meaning that they would try to play even more fairly if that were possible. This yields
the following conditions to start out from:
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∂Πi

∂pi
≥ 0 if i ≤ k

∂Πi

∂pi
≤ 0 if i > k

We use Equation (S6) to simplify them as follows:

1. For player i where i ≤ k, the player is cheating, and the number of other players who
are cheating is k − 1 with certainty (since all pi probabilities are either zeros or ones).
Substituting d = k − 1 into Equation (S6) gives us

(
Ak − Āk−1

)
− rici ≥ 0.

2. For player i where i > k, the player is playing fair, and the number of other players
who are cheating is k with certainty (since all pi probabilities are either zeros or ones).
Substituting d = k into Equation (S6) gives us

(
Ak+1 − Āk

)
− rici ≤ 0.

We then assume a common rc product and move rici to the right hand side to obtain the
final equation:

Ak+1 − Āk ≤ rc ≤ Ak − Āk−1

This concludes our proof.

3 Nash-equilibria in the three-player case

To describe the various Nash-equilibria we will find, we will use a simple encoding scheme
where each letter describes the behaviour of one player. Each letter may be D (doping with
certainty), F (plays fair with certainty), m (mixed strategy) or ∗ (any pure or mixed strategy).
For instance, DDF describes a strategy where two players cheat and the third plays fair all the
time, while mmD is a strategy where two players play mixed strategies and the third cheats
all the time. The order of letters does not matter, mmD is the same as mDm or Dmm. The
difference between m and ∗ is subtle but significant: when a player is marked by m, it means
that the player will assume a mixed strategy with an exact probability for cheating, while ∗
means that the player may take any pure or mixed strategy with any probabiity for cheating
without affecting its own payoff function.

In the three-player case, we know the following:

A0 = 0 A1 = a1 A2 =
a1 + a2

2
A3 =

a1 + a2 + a3

3

Ā0 =
a1 + a2 + a3

3
Ā1 =

a2 + a3

2
Ā2 = a3 Ā3 = 0

A1 − Ā0 =
2a1 − a2 − a3

3
A2 − Ā1 =

a1 − a3

2
A3 − Ā2 =

a1 + a2 − 2a3

3

We also know that

P(D(1) = 0) = (1− p2)(1− p3) = 1− p2 − p3 + p2p3

P(D(1) = 1) = p2(1− p3) + p3(1− p2) = p2 + p3 − 2p2p3

P(D(1) = 2) = p2p3
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The derivative is then

∂Π1

∂p1

= (1− p2 − p3 + p2p3)
2a1 − a2 − a3

3
+ (p2 + p3 − 2p2p3)

a1 − a3

2
+ p2p3

a1 + a2 − 2a3

3
− r1c1

=
2a1 − a2 − a3

3
+ (p2 + p3)

2a2 − a1 − a3

6
+ p2p3 × 0− r1c1

= (p2 + p3)
b2 − b1

6
+

2b1 + b2

3
− r1c1

where bi = ai − ai+1. Note that the bi’s are just an alternate representation of the prize
structure as bi is the difference between the ith and the i+1th prize. The remaining derivatives
are the same but with different indices for pi, ri and ci, but the indices for bi stay the same:

∂Π2

∂p2

= (p1 + p3)
b2 − b1

6
+

2b1 + b2

3
− r1c1

∂Π3

∂p3

= (p1 + p2)
b2 − b1

6
+

2b1 + b2

3
− r1c1

3.1 Pure strategies

3.1.1 Case 1: everyone cheats (DDD)

This means that all the three players are according to condition 2. We have to decide whether
all the derivatives are non-negative (given that all cheat, p1 = p2 = p3 = 1):

2b2 + b1 − 3r1c1 ≥ 0

2b2 + b1 − 3r2c2 ≥ 0

2b2 + b1 − 3r3c3 ≥ 0

Therefore, this particular configuration (i.e. everyone cheats) is a Nash equilibrium if and
only if 2b2+b1

3
≥ maxi rici. Increasing rici above 2b2+b1

3
for at least one player eradicates this

configuration.
A special case is the case of linear prize structures where b1 = b2 = · · · = bn−1 = b, leading

to b ≥ max rici. In other words, if the expected loss of player i when cheating is less than the
difference between two consecutive places in the prize ladder, then the player will cheat.

3.1.2 Case 2: two players cheat, one player plays fair (DDF)

Without loss of generality, we can assume that players 1 and 2 cheat and player 3 plays fair.
Thus, p1 + p2 = 2, p1 + p3 = 1 and p2 + p3 = 1. The equations to check are:

b1 + b2

2
− r1c1 ≥ 0

b1 + b2

2
− r2c2 ≥ 0

2b2 + b1

3
− r3c3 ≤ 0

Here it becomes easier to assume that rici is independent of i, yielding:
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b1 + b2

2
≥ rc ≥ 2b2 + b1

3

The above equation may hold only when b1 ≥ b2; in other words, when the prize structure
is convex or linear. If we assume the case of linear prize structure (i.e. b1 = b2 = b), we obtain
b ≥ rc ≥ b, which can happen only if rc = b. We will see later that rc = b collapses the game
into a configuration where all the strategies are equivalent anyway.

3.1.3 Case 3: one player cheats, two play fair (DFF)

Again, without loss of generality, we can assume that player 1 cheats and players 2 and 3 play
fair. Thus, p1 + p2 = 1, p1 + p3 = 1 and p2 + p3 = 0. The equations are:

2b1 + b2

3
− r1c1 ≥ 0

b1 + b2

2
− r2c2 ≤ 0

b1 + b2

2
− r3c3 ≤ 0

Assuming rici = rc:

2b1 + b2

3
≥ rc ≥ b1 + b2

2

Note that this can hold only when b1 ≤ b2; in other words, when the prize structure is
concave or linear.

3.1.4 Case 4: everyone plays fair (FFF)

In this case, we have p1 = p2 = p3 = 0, which leads to

2b1 + b2

3
− r1c1 ≤ 0

2b1 + b2

3
− r2c2 ≤ 0

2b1 + b2

3
− r3c3 ≤ 0

Therefore, this particular configuration (i.e. everyone plays fair) is a Nash equilibrium if
and only if 2b1+b2

3
≤ min rici. Decreasing rici below 2b1+b2

3
for at least one player eradicates this

configuration.
A special case is the case of linear prize structures which leads to b ≤ min rici. In other

words, if the expected loss of player i when cheating is greater than the difference between two
consecutive places in the prize ladder, then the player will play fair.

Let us take a step back now and examine what we have observed so far. The presence
or absence of various pure Nash-equilibria depend on where the value of the rc product falls
compared to 2b1+b2

3
, b1+b2

2
and b1+2b2

3
. Furthermore, note that the thresholds are also equal to

A1 − Ā0, A2 − Ā1 and A3 − Ā2. We will see that these thresholds will also determine the
behaviour of the model when we allow for mixed strategies as well.
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3.2 Mixed strategies

3.2.1 Case 5: everyone plays a mixed strategy (mmm)

In this configuration, all the partial derivatives must be equal to zero:

(p2 + p3)
b2 − b1

6
+

2b1 + b2

3
= r1c1

(p1 + p3)
b2 − b1

6
+

2b1 + b2

3
= r2c2

(p1 + p2)
b2 − b1

6
+

2b1 + b2

3
= r3c3

When b1 = b2 (i.e. the prize structure is linear), the first term is zero and we recover cases
1 and 4, respectively. Let us therefore assume that b1 6= b2. This leads to:

p2 + p3 =
6r1c1 − 4b1 − 2b2

b2 − b1

p1 + p3 =
6r2c2 − 4b1 − 2b2

b2 − b1

p1 + p2 =
6r3c3 − 4b1 − 2b2

b2 − b1

Again, assuming that rici = rc, we obtain

p1 = p2 = p3 = 3

(
rc− b1

b2 − b1

)
− 1

We also have to ensure that 0 ≤ pi ≤ 1, otherwise this solution would not exist. Therefore,
this Nash equilibrium occurs if and only if

1

3
≤ rc− b1

b2 − b1

≤ 2

3

which is equivalent to

2b1 + b2

3
≤ rc ≤ b1 + 2b2

3

where we notice the same thresholds again as the ones we have seen for the pure case.

3.2.2 Case 6: one player cheats with certainty, others play a mixed strategy
(Dmm)

Without loss of generality, assume that player 1 cheats with certainty. The equations are:

(p2 + p3)
b2 − b1

6
+

2b1 + b2

3
≥ r1c1

(1 + p3)
b2 − b1

6
+

2b1 + b2

3
= r2c2

(1 + p2)
b2 − b1

6
+

2b1 + b2

3
= r3c3
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Again, when b1 = b2, the conditions recover case 3, so let us assume that b1 6= b2. We then
have to distinguish two cases.

The first case is when b1 > b2, i.e. a convex prize structure. In this case, b2− b1 < 0, so the
relation will turn in the first equation as we divide by a negative number:

p2 + p3 ≤
6r1c1 − 4b1 − 2b2

b2 − b1

p3 =
6r2c2 − 3b1 − 3b2

b2 − b1

p2 =
6r3c3 − 3b1 − 3b2

b2 − b1

Assuming a common rc, this means that p2 = p3 = 6rc
b2−b1 − 3 b1+b2

b2−b1 , but since we also have
to satisfy the first equation, this will happen only if

12rc− 6b1 − 6b2

b2 − b1

≤ 6rc− 4b1 − 2b2

b2 − b1

12rc− 6b1 − 6b2 ≥ 6rc− 4b1 − 2b2

rc ≥ b1 + 2b2

3

We also have to ensure that p2 and p3 are between 0 and 1:

0 ≤ 6rc−3b1−3b2
b2−b1 ≤ 1

0 ≥ 6rc− 3b1 − 3b2 ≥ b2 − b1

b1 + b2

2
≥ rc ≥ b1 + 2b2

3

The other case is when b2 > b1, i.e. the prize structure is concave. In this case, the relation
mark does not turn, but since p2 and p3 were determined from the second and third equations
that do not contain the relation mark, the solution will be the same. Substituting p2 and p3

back into the first equation yields rc ≥ b1+2b2
3

. Therefore, this Nash equilibrium will appear if
and only if

b1 + 2b2

3
≤ rc ≤ b1 + b2

2

3.2.3 Case 7: one player plays fair with certainty, others play a mixed strategy
(Fmm)

Without loss of generality, assume that player 1 plays fair with certainty. The equations are:

(p2 + p3)
b2 − b1

6
+

2b1 + b2

3
≤ r1c1

p3
b2 − b1

6
+

2b1 + b2

3
= r2c2

p2
b2 − b1

6
+

2b1 + b2

3
= r3c3
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With a common rc, the second and third equations yield p2 = p3 = 6rc−4b1−2b2
b2−b1 , and to

satisfy the first one, we also need rc ≤ 2b1+b2
3

. Since p2 and p3 must be between zero and one,
the complete set of conditions is:

b1 + b2

2
≤ rc ≤ 2b1 + b2

3

3.2.4 Case 8: two players cheat with certainty, one plays a mixed strategy (DDm)

Without loss of generality, assume that players 1 and 2 cheat with certainty. The equations
are:

(1 + p3)
b2 − b1

6
+

2b1 + b2

3
≥ r1c1

(1 + p3)
b2 − b1

6
+

2b1 + b2

3
≥ r2c2

2b2 + b1

3
= r3c3

Assuming a common rc, the third equation clearly places a constraint on the occurrence of
this NE – it will occur only for a particular value of rc. In that case, the first two equations
will prescribe an upper or a lower bound on p3, depending on the sign of b2 − b1.

When b2 > b1, there will be a lower bound on p3, i.e. p3 > 6rc
b2−b1 − 3 b1+b2

b2−b1 , but since we
know rc exactly from the third equation, this yields p3 ≥ 1. Since p3 is a probability, the only
allowed value is p3 = 1, which is in fact case 1 (three players cheat with certainty). Thus, case
8 does not exist for concave prize structures.

When b2 < b1, there will be a trivial upper bound on p3, i.e. p3 ≤ 1, which is not a restriction
on p3, meaning that case 8 is better marked as the DD∗ case.

3.2.5 Case 9: two players play fair with certainty, one plays a mixed strategy
(FFm)

Without loss of generality, assume that players 1 and 2 play fair with certainty. The equations
are:

p3
b2 − b1

6
+

2b1 + b2

3
≤ r1c1

p3
b2 − b1

6
+

2b1 + b2

3
≤ r2c2

2b1 + b2

3
= r3c3

Similarly to case 8, case 9 will either collapse to case 4 (FFF) when b2 > b1, or will collapse
to FF∗ if b2 < b1.

3.2.6 Case 10: one player plays fair, one player cheats, the third is mixed (DFm)

Without loss of generality, assume that player 1 plays fair, player 2 cheats and player 3 is mixed.
The equations are:
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(1 + p3)
b2 − b1

6
+

2b1 + b2

3
≤ r1c1

p3
b2 − b1

6
+

2b1 + b2

3
≥ r2c2

b1 + b2

2
= r3c3

Let us assume a common rc:

p3(b2 − b1) ≤ 0

(p3 − 1)(b2 − b1) ≥ 0

If b1 < b2, the only solution is p3 = 0, collapsing this case into case 2 (DDF). If b1 > b2, any
p4 satisfies the equations, making it equivalent to DF∗.

3.3 Summary of the three-player case

All the conditions we have obtained for rc depended on three thresholds: 2b1+b2
3

, b1+b2
2

and
b1+2b2

3
. These are also equal to A1 − Ā0, A2 − Ā1 and A3 − Ā2. The behaviour of the model

will depend on the relation of rc to these thresholds. First, let us assume that b1 < b2, i.e. the
prize structure is concave. In this case, we have the following:

rc Cases of Nash-equilibria

Less than A3 − Ā2 DDD

Exactly A3 − Ā2 DDD, DDF

Between A3 − Ā2 and A2 − Ā1 DDF, Dmm, mmm

Exactly A2 − Ā1 DDF, DFF, mmm with p = 0.5

Between A2 − Ā1 and A1 − Ā0 DFF, Fmm, mmm

Exactly A1 − Ā0 DFF, FFF

Greater than A1 − Ā0 FFF

When the prize structure is convex, b1 is larger than b2, leading to the following cases:
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rc Cases of Nash-equilibria

Less than A3 − Ā2 DDD

Exactly A3 − Ā2 DD∗

Between A3 − Ā2 and A2 − Ā1 DDF, Dmm, mmm

Exactly A2 − Ā1 DF∗, mmm with p = 0.5

Between A2 − Ā1 and A1 − Ā0 DFF, Fmm, mmm

Exactly A1 − Ā0 FF∗

Greater than A1 − Ā0 FFF

For linear prize structures, b1 = b2 = b = A2 − Ā1 and we obtain:

rc Cases of Nash-equilibria

Less than A2 − Ā1 DDD

Exactly A2 − Ā1 ∗ ∗ ∗
Greater than A2 − Ā1 FFF

Finally, we present an alternative representation of the the different types of Nash equilibria
on Figure S2. On this figure, each Nash equilibrium is represented by a box and Nash equilibria
corresponding to the same rc value are arranged in the same column. The value of the rc product
increases from left to right. Arrows denote the “transition” of one type of Nash equilibrium
into another (for instance, a DDD type Nash equilibrium into Dmm) as the value of rc changes.
The upper panel contains the case of concave prize functions while the lower panel contains the
convex case.

4 Nash-equilibria in the four-player case

In the four-player case, we know the following:

A0 = 0 A1 = a1 A2 =
a1 + a2

2
A3 =

a1 + a2 + a3

3
A4 =

a1 + a2 + a3 + a4

4

Ā0 =
a1 + a2 + a3 + a4

4
Ā1 =

a2 + a3 + a4

3
Ā2 =

a3 + a4

2
Ā3 = a4 Ā4 = 0

A1 − Ā0 =
3a1 − a2 − a3 − a4

4
=

3b1 + 2b2 + b3

4

A2 − Ā1 =
3a1 + a2 − 2a3 − 2a4

6
=

3b1 + 4b2 + 2b3

6

A3 − Ā2 =
2a1 + 2a2 − a3 − 3a4

6
=

2b1 + 4b2 + 3b3

6

A4 − Ā3 =
a1 + a2 + a3 − 3a4

4
=

b1 + 2b2 + 3b3

4

We also know that
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P(D(1) = 0) = (1− p2)(1− p3)(1− p4)

= 1− p2 − p3 − p4 + p2p3 + p2p4 + p3p4 − p2p3p4

P(D(1) = 1) = p2(1− p3)(1− p4) + (1− p2)p3(1− p4) +

(1− p2)(1− p3)p4

= p2 − p2p3 − p2p4 + p2p3p4 + p3 − p2p3 − p3p4 + p2p3p4 +

p4 − p2p4 − p3p4 + p2p3p4

= p2 + p3 + p4 − 2p2p3 − 2p2p4 − 2p3p4 + 3p2p3p4

P(D(1) = 2) = p2p3(1− p4) + p2(1− p3)p4 + (1− p2)p3p4

= p2p3 + p2p4 + p3p4 − 3p2p3p4

P(D(1) = 3) = p2p3p4

The derivative of the payoff function Π1 with respect to p1 is then

∂Π1

∂p1

=
b3 − 2b2 + b1

12
(p2p3 + p2p4 + p3p4) +

b3 + 2b2 − 3b1

12
(p2 + p3 + p4) +

3b1 + 2b2 + b3

4
− r1c1

4.1 Pure strategies

4.1.1 Case 1: everyone cheats (DDDD)

We have to decide whether all the derivatives are non-negative (given that all cheat, p1 = p2 =
p3 = p4 = 1):

b1 + 2b2 + 3b3 − 4r1c1 ≥ 0

b1 + 2b2 + 3b3 − 4r2c2 ≥ 0

b1 + 2b2 + 3b3 − 4r3c3 ≥ 0

b1 + 2b2 + 3b3 − 4r4c4 ≥ 0

Therefore, this particular configuration is a Nash equilibrium if and only if b1+2b2+3b3
4

≥
maxi rici; note that the left hand side is equal to A4 − Ā3, which echoes the rule we have seen
for the three player case, where the threshold was A3 − Ā2.

4.1.2 Case 2: three players cheat, one player plays fair (DDDF)

Without loss of generality, we can assume that players 1, 2 and 3 cheat and player 4 plays fair.
Thus, p1p2 = p2p3 = p1p3 = 1, p1p4 = p2p4 = p3p4 = 0, p1 + p2 + p3 = 3, p1 + p2 + p4 =
p1 + p3 + p4 = p2 + p3 + p4 = 2. The equations to check are:
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2b1 + 4b2 + 3b3

6
− r1c1 ≥ 0

2b1 + 4b2 + 3b3

6
− r2c2 ≥ 0

2b1 + 4b2 + 3b3

6
− r3c3 ≥ 0

b1 + 2b2 + 3b3

4
− r4c4 ≤ 0

Assuming a common rc yields:

2b1 + 4b2 + 3b3

6
> rc >

b1 + 2b2 + 3b3

4

where the left hand side is equal to A3 − Ā2 and the right hand side is equal to A4 − Ā3.
Note that for linear prize structures, this can happen only if rc = 3

2
b.

4.1.3 Case 3: two players cheat, two play fair (DDFF)

Without loss of generality, we can assume that players 1, 2 cheat and players 3 and 4 play fair.
The equations to check are:

3b1 + 4b2 + 2b3

6
− r1c1 ≥ 0

3b1 + 4b2 + 2b3

6
− r2c2 ≥ 0

2b1 + 4b2 + 3b3

6
− r3c3 ≥ 0

2b1 + 4b2 + 3b3

6
− r4c4 ≤ 0

Assuming a common rc yields:

3b1 + 4b2 + 2b3

6
≥ rc ≥ 2b1 + 4b2 + 3b3

6

where the left hand side is equal to A2 − Ā1 and the right hand side is equal to A3 − Ā2.
For linear prize structures, this will collapse into rc = 3

2
b as above.

4.1.4 Case 4: one player cheats, three play fair (DFFF)

Without loss of generality, we can assume that player 1 cheats and players 2, 3 and 4 play fair.
The equations to check are:

3b1 + 2b2 + b3

4
− r1c1 ≥ 0

3b1 + 4b2 + 2b3

6
− r2c2 ≤ 0

3b1 + 4b2 + 2b3

6
− r3c3 ≤ 0

3b1 + 4b2 + 2b3

6
− r4c4 ≤ 0

14



Assuming a common rc yields:

3b1 + 2b2 + b3

4
≥ rc ≥ 3b1 + 4b2 + 2b3

6

where the left hand side is equal to A1 − Ā0 and the right hand side is equal to A2 − Ā1.
For linear prize structures, this will collapse into rc = 3

2
b as above.

4.1.5 Case 5: everyone plays fair (FFFF)

We have to decide whether all the derivatives are negative (given that all play fair, p1 = p2 =
p3 = p4 = 0):

3b1 + 2b2 + b3 − 4r1c1 ≤ 0

3b1 + 2b2 + b3 − 4r2c2 ≤ 0

3b1 + 2b2 + b3 − 4r3c3 ≤ 0

3b1 + 2b2 + b3 − 4r4c4 ≤ 0

Therefore, this particular configuration is a Nash equilibrium if and only if 3b1+2b2+b3
4

≤
mini rici; note that the left hand side is equal to A1 − Ā0, which echoes the rule we have seen
in case 4 of the three-player case.

Let us take a step back now again and examine what we have observed so far. The pres-
ence or absence of various pure Nash-equilibria depend on where the value of the rc product
falls compared to 3b1+2b2+b3

4
, 3b1+4b2+2b3

6
, 2b1+4b2+3b3

6
and b1+2b2+3b3

4
. Furthermore, note that the

thresholds are also equal to A1 − Ā0, A2 − Ā1, A3 − Ā2 and A4 − Ā3. We will encounter these
thresholds later when we allow for mixed strategies as well.

4.2 Mixed strategies

4.2.1 Case 6: everyone plays a mixed strategy (mmmm)

In this configuration, all the partial derivatives must be equal to zero. Let’s see where this
leads:

(p2p3 + p2p4 + p3p4)
b3 − 2b2 + b1

12
+

(p2 + p3 + p4)
b3 + 2b2 − 3b1

12
+

3b1 + 2b2 + b3

4
= r1c1

and so on for r2c2, r3c3 and r4c4. Here we assume a common rc again. For sake of simplicity,
let us denote b3 − 2b2 + b1 with C1, b3 + 2b2 − 3b1 with C2 and 3b1 + 2b2 + b3 with C3:

(p2p3 + p2p4 + p3p4)C1 + (p2 + p3 + p4)C2 = 12rc− 3C3

(p1p3 + p1p4 + p3p4)C1 + (p1 + p3 + p4)C2 = 12rc− 3C3

(p1p2 + p1p4 + p2p4)C1 + (p1 + p2 + p4)C2 = 12rc− 3C3

(p1p2 + p1p3 + p2p3)C1 + (p1 + p2 + p3)C2 = 12rc− 3C3

Because of the common rc, all the players are equivalent and all the equations are symmetric
so we have no reason to assume that p1 6= p2 or p2 6= p3 or p3 6= p4. (Proof by contradiction:
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suppose that p1 6= p2; in this case, the left hand side of the first two equations are different but
the right hand side are the same, so they cannot be both satisfied). Switching to a common p
gives us a single quadratic equation:

C1p
2 + C2p + C3 − 4rc = 0

and the two solutions are:

p =
−C2 ±

√
C2

2 − 4C1C3 + 16C1rc

2C1

= − C2

2C1

±
√(

C2

2C1

)2

− C3 − 4rc

C1

However, since we also know that p must be between 0 and 1, we can bound rc from above
and below to ensure that. Let us assume that p = 0; in this case, rc must be exactly C3/4 =
3b1+2b2+b3

4
= A1 − Ā0. Let us now assume that p = 1; in this case, rc must be C1+C2+C3

4
=

b1+2b2+3b3
4

= A4− Ā3. It can easily be shown that any rc between these two extremes will yield
a solution for p between 0 and 1, and that there will be only one such solution because the
other solution of the quadratic equation will fall outside the allowed region.

When we compare this case with case 5 (mmm) of the three-player case, we can see that
the rc region is similar as it fills the space on the rc axis between the “everyone cheats” and
the “everyone plays fair” region. However, a significant difference is that in the three-player
case, the actual value of p was a linear function of rc, while in this case it depends on

√
rc. We

conjecture that in the general n-player case, the value of p will depend on (rc)1/(n−2).
Finally, we can evaluate what happens when the prize structure is linear. In this case,

C1 = C2 = 0 (since all the b’s are equal), so the equation is not quadratic any more; we obtain

3

2
b = rc

4.2.2 Case 7: three players cheat with certainty, one plays a mixed strategy
(DDDm)

Without loss of generality, assume that players 1, 2 and 3 cheat with certainty. The equations
are:

(1 + 2p4)C1 + (2 + p4)C2 ≥ 12rc− 3C3

C1 + C2 + C3 = 4rc

The second equation gives us a condition that must hold irrespectively of the actual value of
p4; it dictates that b1+2b2+3b3

4
= A4 − Ā3 = rc. When this holds, the first equation is simplified

to

(p4 − 1)(2C1 + C2) ≥ 0

and since p4 < 1 (note that p4 plays a mixed strategy; we have already treated the case of
p4 = 1 in case 1), it follows that we need 3b3 − 2b2 − b1 ≤ 0. Therefore, this Nash equilibrium
arises if the following two conditions both hold at the same time:

1. rc = A4 − Ā3

2. b3 ≤ 2b2+b1
3

.
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If both of the above conditions hold, any p4 will satisfy the equations (including p4 = 0 or
p4 = 1, which were already shown to be Nash-equilibria in Cases 1 and 2). Since any p4 is
suitable, this strategy then becomes DDD∗.

For convex prize functions (b1 ≥ b2 ≥ b3), the second condition trivially holds and all we
need is rc = A4 − Ā3. For linear prize functions, rc becomes 3

2
b. For concave prize functions

(b1 ≤ b2 ≤ b3), the second condition will never hold (unless b1 = b2 = b3) and this case will not
be a Nash-equilibrium.

4.2.3 Case 8: two players cheat with certainty, one plays fair with certainty, one
plays a mixed strategy (DDFm)

Without loss of generality, assume that players 1 and 2 cheat with certainty, and player 3 plays
fair. The equations are:

p4C1 + (1 + p4)C2 ≥ 12rc− 3C3

(1 + 2p4)C1 + (2 + p4)C2 ≤ 12rc− 3C3

C1 + 2C2 = 12rc− 3C3

Again, the third equation will give us a necessary condition for this configuration to be a
Nash-equilibrium: rc = A3− Ā2. When this holds, the remaining two equations are as follows:

(p4 − 1)(C1 + C2) ≥ 0

p4(2C1 + C2) ≤ 0

The implications are that C1 + C2 ≤ 0 and 2C1 + C2 ≤ 0. Substituting C1 and C2 back
yields the following two conditions for this Nash-equilibrium, both of which must be satisfied:

1. rc = A3 − Ā2

2. b3 ≤ min(b1; 2b2+b1
3

).

If the above conditions both hold, any p4 will satisfy the equations, including p4 = 0 or
p4 = 1, which were already treated in Cases 2 and 3. Since any p4 is suitable, this strategy
then becomes DDF∗.

For convex prize functions (b1 ≥ b2 ≥ b3), the second condition trivially holds and all we
need is rc = A3 − Ā2. For linear prize functions, rc becomes 3

2
b. For concave prize functions

(b1 ≤ b2 ≤ b3), the second condition will never hold (unless b1 = b2 = b3) and this case will not
be a Nash-equilibrium.

4.2.4 Case 9: one player cheats with certainty, two play fair with certainty, one
plays a mixed strategy (DFFm)

Without loss of generality, assume that player 1 cheats with certainty, and players 2 and 3 play
fair. The equations are:

p4C2 ≥ 12rc− 3C3

p4C1 + (1 + p4)C2 ≤ 12rc− 3C3

C2 = 12rc− 3C3
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Again, the third equation will give us a necessary condition for this configuration to be a
Nash-equilibrium: rc = A2− Ā1. When this holds, the remaining two equations are as follows:

p4C2 ≥ C2

p4(C1 + C2) ≤ 0

The first equation implies that C2 ≤ 0 (since otherwise p4 would have to be larger than 1,
which is impossible). This is equivalent to b3 + 2b2 ≤ 3b1. The second equation implies that
C1 + C2 ≤ 0 (again, otherwise p4 would have to be negative, which is impossible). This is
equivalent to b3 ≤ b1. Therefore, this Nash equilibrium arises if the following two conditions
hold:

1. rc = A2 − Ā1

2. b1 ≥ max(b3; 2b2+b3
3

).

If the above conditions both hold, any p4 will satisfy the equations, including p4 = 0 or
p4 = 1, which were already treated in Cases 3 and 4. Since any p4 is suitable, this strategy
then becomes DFF∗.

For convex prize functions (b1 ≥ b2 ≥ b3), the second condition trivially holds and all we
need is rc = A2 − Ā1. For linear prize functions, rc becomes 3

2
b. For concave prize functions

(b1 ≤ b2 ≤ b3), the second condition will never hold (unless b1 = b2 = b3) and this case will not
be a Nash-equilibrium.

4.2.5 Case 10: three players play fair with certainty, one plays a mixed strategy
(FFFm)

Without loss of generality, assume that players 1, 2 and 3 play fair with certainty. The equations
are:

p4C2 ≤ 12rc− 3C3

0 = 12rc− 3C3

The second equation says that this is a Nash-equilibrium only if rc = 3b1+2b2+b3
4

= A1 − Ā0.
The first equation dictates that in this case, C2 must be non-positive (because p2 is non-negative
and the right hand side is zero). Therefore, this Nash equilibrium arises if the following two
conditions hold:

1. rc = A1 − Ā0

2. b1 ≥ 2b2+b3
3

.

If both the above conditions hold, any p4 will satisfy the equations, including p4 = 0 or
p4 = 1, which were already treated in Cases 4 and 5. Since any p4 is suitable, this strategy
then becomes FFF∗.

For convex prize functions (b1 ≥ b2 ≥ b3), the second condition trivially holds and all we
need is rc = A1 − Ā0. For linear prize functions, rc becomes 3

2
b. For concave prize functions

(b1 ≤ b2 ≤ b3), the second condition will never hold (unless b1 = b2 = b3) and this case will not
be a Nash-equilibrium.
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4.2.6 Case 11: two players cheat with certainty, two play a mixed strategy (DDmm)

Without loss of generality, assume that players 1 and 2 cheat with certainty. The equations
are:

(p3 + p4 + p3p4)C1 + (1 + p3 + p4)C2 ≥ 12rc− 3C3

(p3 + p4 + p3p4)C1 + (1 + p3 + p4)C2 ≥ 12rc− 3C3

(1 + 2p4)C1 + (2 + p4)C2 = 12rc− 3C3

(1 + 2p3)C1 + (2 + p3)C2 = 12rc− 3C3

Again, the last two equations are symmetric w.r.t. p3 and p4 so we can replace them with
a common p. The first two equations collapse into one:

(2p + p2)C1 + (1 + 2p)C2 ≥ 12rc− 3C3

(1 + 2p)C1 + (2 + p)C2 = 12rc− 3C3

Let us work out the second equation first:

(1 + 2p)C1 + (2 + p)C2 = 12rc− 3C3

(2C1 + C2)p + C1 + 2C2 = 12rc− 3C3

p =
12rc− 3C3 − 2C2 − C1

2C1 + C2

p =
12rc− 4b1 − 8b2 − 6b3

3b3 − 2b2 − b1

In order for the first equation to be true, we also need:

(2p + p2)C1 + (1 + 2p)C2 ≥ (1 + 2p)C1 + (2 + p)C2

(p2 − 1)C1 + (p− 1)C2 ≥ 0

(p− 1)((p + 1)C1 + C2) ≥ 0

(p + 1)C1 + C2 ≤ 0

p(b3 − 2b2 + b1) ≤ 2b1 − 2b3

At this stage, we must distinguish between three sub-cases:

• If b3 > 2b2 − b1, it follows that p ≤ 2b1−2b3
b3−2b2+b1

.

• If b3 < 2b2 − b1, it follows that p ≥ 2b1−2b3
b3−2b2+b1

.

• If b3 = 2b2 − b1, the entire left hand side is zero, so we need b3 ≤ b1.

We also have to ensure that the calculated p is between 0 and 1. p > 0 is satisfied when

rc > A3 − Ā2 and 3b3 > 2b2 + b1

or
rc < A3 − Ā2 and 3b3 < 2b2 + b1
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while p < 1 is satisfied when

rc < A4 − Ā3 and 3b3 > 2b2 + b1

or
rc > A4 − Ā3 and 3b3 < 2b2 + b1

Note that we do not consider p = 0 or p = 1 because they have already been treated in
cases 1 and 3. To sum it all up, this Nash-equilibrium will arise if the following conditions all
hold at the same time:

1. p = 12rc−4b1−8b2−6b3
3b3−2b2−b1

2. A3 − Ā2 < rc < A4 − Ā3 and 3b3 > 2b2 + b1

or A4 − Ā3 < rc < A3 − Ā2 and 3b3 < 2b2 + b1

3. b3 > 2b2 − b1 and p ≤ 2b1−2b3
b3−2b2+b1

or b3 < 2b2 − b1 and p ≥ 2b1−2b3
b3−2b2+b1

or b3 = 2b2 − b1, in which case p = 6rc+b1−10b2
2b2−2b1

4.2.7 Case 12: one player cheats with certainty, one plays fair with certainty, two
play a mixed strategy (DFmm)

Without loss of generality, assume that player 1 cheats with certainty and player 2 plays fair
with certainty. The equations are:

p3p4C1 + (p3 + p4)C2 ≥ 12rc− 3C3

(p3 + p4 + p3p4)C1 + (1 + p3 + p4)C2 ≤ 12rc− 3C3

p4C1 + (1 + p4)C2 = 12rc− 3C3

p3C1 + (1 + p3)C2 = 12rc− 3C3

Again, we can assume a common p = p3 = p4 because of the last two equations:

C1p
2 + 2C2p ≥ 12rc− 3C3

C1p
2 + 2(C1 + C2)p + C2 ≤ 12rc− 3C3

(C1 + C2)p + C2 = 12rc− 3C3

Let us work out the third equation first:

p =
12rc− 6b1 − 8b2 − 4b3

2b3 − 2b1

Since we know that 0 < p < 1, this Nash-equilibrium can arise only if

A2 − Ā1 < rc < A3 − Ā2 and b3 > b1

or
A3 − Ā2 < rc < A2 − Ā1 and b3 < b1

Additional conditions will arise from the first two equations:
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C1p
2 + (C2 − C1)p− C2 ≥ 0

C1p
2 + (C1 + C2)p ≤ 0

Let us start with the second equation:

p(C1(p + 1) + C2) ≤ 0

C1p ≤ −C1 − C2

p(b3 − 2b2 + b1) ≤ 2b1 − 2b3

which holds if b3 + b1 ≥ 2b2 and p ≤ 2b1−2b3
b3−2b2+b1

, or if b3 + b1 ≤ 2b2 and p ≥ 2b1−2b3
b3−2b2+b1

. When
b3 + b1 = 2b2, the left hand side is zero and we are left with b1 ≥ b3.

The other equation yields two roots:

p1,2 =
(C1 − C2)±

√
C2

2 + C2
1 + 2C1C2

2C1

=
C1 − C2 ± (C1 + C2)

2C1

p1 = 1

p2 = −C2

C1

=
3b1 − 2b2 − b3

b3 − 2b2 + b1

Now, if C1 < 0, the equation is satisfied if p is between p1 and p2, and if C1 > 0, the
equation is satisfied if p is less than min(p1, p2) or greater than max(p1, p2). Let’s cover all the
four cases:

• If C1 < 0 and C2 < 0, p2 is negative, so every p between 0 and 1 satisfies the equation,
including p = 12rc−6b1−8b2−4b3

2b3−2b1
that we already determined.

• If C1 < 0 and C2 > 0, p2 is positive. If C2 < −C1, we have p > −C2

C1
, otherwise there is

no valid p which gives a solution.

• If C1 > 0 and C2 < 0, p2 is positive. If C2 < −C1, we have p < −C2

C1
, otherwise there is

no valid p which gives a solution.

• If C1 > 0 and C2 > 0, p2 is negative, which excludes any valid p between 0 and 1 from
being a solution.

To sum it all up, this Nash-equilibrium will arise if the following conditions all hold at the
same time:

1. p = 12rc−6b1−8b2−4b3
2b3−2b1

2. A2 − Ā1 < rc < A3 − Ā2 and b3 > b1

or A3 − Ā2 < rc < A2 − Ā1 and b3 < b1

3. b3 > 2b2 − b1 and p < 2b1−2b3
b3−2b2+b1

or b3 < 2b2 − b1 and p > 2b1−2b3
b3−2b2+b1

or b3 = 2b2 − b1, in which case p = 12rc−2b1−16b2
4b2−4b1

4. b3 < min(2b2 − b1; 3b1 − 2b2)
or b3 < min(b1; 2b2 − b1) and p > 3b1−2b2−b3

b3−2b2+b1

or b3 > 2b2 − b1 and b3 < b1 and p < 3b1−2b2−b3
b3−2b2+b1
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4.2.8 Case 13: two players play fair with certainty, two play a mixed strategy
(FFmm)

Without loss of generality, assume that players 1 and 2 play fair with certainty. The equations
are:

p3p4C1 + (p3 + p4)C2 ≤ 12rc− 3C3

p3p4C1 + (p3 + p4)C2 ≤ 12rc− 3C3

p4C2 = 12rc− 3C3

p3C2 = 12rc− 3C3

Again, the last two equations are symmetric w.r.t. p3 and p4 so we can replace them with
a common p. The first two equations collapse into one:

p2C1 + 2pC2 ≤ 12rc− 3C3

pC2 = 12rc− 3C3

Let us work out the second equation first:

p =
12rc− 9b1 − 6b2 − 3b3

b3 + 2b2 − 3b1

(S7)

In order for the first equation to be true, we also need:

C1p
2 + C2p ≤ 0

p(C1p + C2) ≤ 0

C1p + C2 ≤ 0

p(b3 − 2b2 + b1) ≤ 3b1 − 2b2 − b3

At this stage, we must distinguish between three sub-cases:

• If b3 > 2b2 − b1, it follows that p ≤ 3b1−2b2−b3
b3−2b2+b1

.

• If b3 < 2b2 − b1, it follows that p ≥ 3b1−2b2−b3
b3−2b2+b1

.

• If b3 = 2b2 − b1, the entire left hand side is zero, so we need 3b1 ≥ 2b2 + b3.

We also have to ensure that the calculated p is between 0 and 1. p > 0 is satisfied when

rc > A1 − Ā0 and b3 + 2b2 > 3b1

or
rc < A1 − Ā0 and b3 + 2b2 < 3b1

p < 1 is satisfied when

rc < A2 − Ā1 and b3 + 2b2 > 3b1

or
rc > A2 − Ā1 and b3 + 2b2 < 3b1

Note that we do not consider p = 0 or p = 1 because they have already been treated in
cases 3 and 5. To sum it all up, this Nash-equilibrium will arise if the following conditions all
hold at the same time:
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1. p = 12rc−9b1−6b2−3b3
b3+2b2−3b1

2. A1 − Ā0 < rc < A2 − Ā1 and b3 + 2b2 > 3b1

or A2 − Ā1 < rc < A1 − Ā0 and b3 + 2b2 < 3b1

3. b3 > 2b2 − b1 and p ≤ 3b1−2b2−b3
b3−2b2+b1

or b3 < 2b2 − b1 and p ≥ 3b1−2b2−b3
b3−2b2+b1

or b3 = 2b2 − b1, in which case p = 12rc−6b1−12b2
4b2−4b1

4.2.9 Case 14: one player cheats with certainty, others play a mixed strategy
(Dmmm)

Without loss of generality, assume that player 1 cheats with certainty. The equations are:

(p2p3 + p2p4 + p3p4)C1 + (p2 + p3 + p4)C2 ≥ 12rc− 3C3

(p3 + p4 + p3p4)C1 + (1 + p3 + p4)C2 = 12rc− 3C3

(p2 + p4 + p2p4)C1 + (1 + p2 + p4)C2 = 12rc− 3C3

(p2 + p3 + p2p3)C1 + (1 + p2 + p3)C2 = 12rc− 3C3

Again, the last three equations are symmetric w.r.t. p2, p3 and p4 so we can replace them
with a common p:

C1p
2 + C2p + C3 − 4rc ≥ 0

C1p
2 + 2(C1 + C2)p + C2 + 3C3 − 12rc = 0

Both quadratic equations have two roots; let us work out the roots of the second equation
first:

p = −C1 + C2

C1

±
√(

C1 + C2

C1

)2

− C2 + 3C3 − 12rc

C1

Since p must lie beween 0 and 1, we can also use the second equation to bound rc from
above and below. Let us first assume that p = 0; in this case, rc = C2+3C3

12
= A2−Ā1. Similarly,

when p = 1, rc becomes C1+C2+C3

4
= A4− Ā3. Therefore, it must be ensured that rc is between

A2 − Ā1 and A4 − Ā3 in order for this Nash-equilibrium to arise.
The first equation also gives us some further necessary conditions on rc; the roots here are

similar to the roots of Case 6 (note that the equation is the same):

p1,2 =
−C2 ±

√
C2

2 − 4C1C3 + 16C1rc

2C1

= − C2

2C1

±
√(

C2

2C1

)2

− C3 − 4rc

C1

When C1 < 0, p must be between p1 and p2; when C1 > 0, p must be less than min(p1, p2)
or greater than max(p1, p2).

4.2.10 Case 15: one player plays fair with certainty, others play a mixed strategy
(Fmmm)

Without loss of generality, assume that player 1 plays fair with certainty. The equations are:
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(p2p3 + p2p4 + p3p4)C1 + (p2 + p3 + p4)C2 ≤ 12rc− 3C3

p3p4C1 + (p3 + p4)C2 = 12rc− 3C3

p2p4C1 + (p2 + p4)C2 = 12rc− 3C3

p2p3C1 + (p2 + p3)C2 = 12rc− 3C3

Again, the last three equations are symmetric w.r.t. p2, p3 and p4 so we can replace them
with a common p:

C1p
2 + C2p + C3 − 4rc ≤ 0

C1p
2 + 2C2p + 3C3 − 12rc = 0

Both quadratic equations have two roots; let us work out the roots of the second equation
first:

p = −C2

C1

±
√(

C2

C1

)2

− 3C3 − 12rc

C1

Since p must lie beween 0 and 1, we can also use the second equation to bound rc from
above and below. Let us first assume that p = 0; in this case, rc = C3

4
= A1 − Ā0. Similarly,

when p = 1, rc becomes C1+2C2+3C3

12
= A3−Ā2. Therefore, it must be ensured that rc is between

A1 − Ā0 and A3 − Ā2 in order for this Nash-equilibrium to arise.
The first equation also gives us some further necessary conditions on rc; the roots here are

similar to the roots of Case 6 (note that the equation is the same):

p1,2 =
−C2 ±

√
C2

2 − 4C1C3 + 16C1rc

2C1

= − C2

2C1

±
√(

C2

2C1

)2

− C3 − 4rc

C1

When C1 > 0, p must be between p1 and p2; when C1 < 0, p must be less than min(p1, p2)
or greater than max(p1, p2).

4.3 Summary of the four-player case

All the conditions we have obtained for rc depended on four thresholds: A1 − Ā0, A2 − Ā1,
A3 − Ā2 and A4 − Ā3. The behaviour of the model will primarily depend on the relation of rc
to these thresholds as each region allows only specific types of Nash equilibria. Note that some
of the cases as discussed above also depend on other criteria that are mostly related to the bi
variables that define the shape of the prize function.

In the three-player case that we discussed before, prize functions were categorized into three
classes (concave, convex and linear ones) depending on the relation of b1 to b2. In the four-player
case, we have b1, b2 and b3, therefore the classification is not so straightforward. However, we
can say that “realistic” prize functions are typically convex (i.e. b1 ≥ b2 ≥ b3), and we can also
evaluate linear (b1 = b2 = b3) and concave (b1 ≤ b2 ≤ b3) prize functions to complement our
analysis and to make it comparable with the three-player case.

Let us start with the concave case:
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rc Cases of Nash-equilibria

Less than A4 − Ā3 DDDD

Exactly A4 − Ā3 DDDD, DDDF

Between A4 − Ā3 and A3 − Ā2 DDDF, DDmm, Dmmm, mmmm

Exactly A3 − Ā2 DDDF, DDFF, Dmmm, mmmm

Between A3 − Ā2 and A2 − Ā1 DDFF, DFmm, Dmmm, Fmmm, mmmm

Exactly A2 − Ā1 DDFF, DFFF, Fmmm, mmmm

Between A2 − Ā1 and A1 − Ā0 DFFF, FFmm, Fmmm, mmmm

Exactly A1 − Ā0 DFFF, FFFF

Greater than A1 − Ā0 FFFF

If the prize function is convex, the above table will look slightly different:

rc Cases of Nash-equilibria

Less than A4 − Ā3 DDDD

Exactly A4 − Ā3 DDD∗

Between A4 − Ā3 and A3 − Ā2 DDDF, DDmm, Dmmm, mmmm

Exactly A3 − Ā2 DDF∗, Dmmm, mmmm

Between A3 − Ā2 and A2 − Ā1 DDFF, DFmm, Dmmm, Fmmm, mmmm

Exactly A2 − Ā1 DFF∗, Fmmm, mmmm

Between A2 − Ā1 and A1 − Ā0 DFFF, FFmm, Fmmm, mmmm

Exactly A1 − Ā0 FFF∗

Greater than A1 − Ā0 FFFF

For linear prize functions (b = b1 = b2 = b3), the table is simplified to the following as all
the thresholds collapse into a single one:

rc Cases of Nash-equilibria

Less than 3
2
b DDDD

Exactly 3
2
b ∗ ∗ ∗∗

Greater than 3
2
b FFFF

Finally, we present an alternative representation of the the different types of Nash equilibria
on Figure S3. On this figure, each Nash equilibrium is represented by a box and Nash equilibria
corresponding to the same rc value are arranged in the same column. The value of the rc product
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increases from left to right. Arrows denote the “transition” of one type of Nash equilibrium
into another (for instance, a DDDD type Nash equilibrium into Dmmm) as the value of rc
changes. The upper panel contains the case of concave prize functions while the lower panel
contains the convex case.
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Figure S1: The original pay-off matrix from [1].
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Figure S2: Nash equilibria in the three-player doping game as a function of the value of rc.
Each Nash equilibrium is represented by a box. Nash equilibria with the same rc product are
in the same column. rc increases from left to right. An arrow points from one Nash equilibrium
into another if changing rc transforms a Nash equilibrium into another one.
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Figure S3: Nash equilibria in the four-player doping game as a function of the value of rc. Each
Nash equilibrium is represented by a box. Nash equilibria with the same rc product are in the
same column. rc increases from left to right. An arrow points from one Nash equilibrium into
another if changing rc transforms a Nash equilibrium into another one.
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