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1 The two-player performance-enhancing drug game as

a special case

In this section, we show how the multi-player doping game can be parametrised to reproduce the
original two-player doping game of [1]; that is, we will check if the expanded model described in
the Model set-up section of the main manuscript is able to regenerate the original performance-
enhancing drug game in [1].
In order to mimic this model, we will need to assign correct values to the new set of
parameters. It can be shown easily that the following parametrisation leads to this objective:

n=2,a=a, aa=0, 1y =ro=randc, =c, =c

(S1)

Given the parametric assumptions of Equation (S1), the variable d may take three values;
0, 1, or 2. If d = 0, nobody takes drugs and the expected payoff of players can be computed as:

2
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In the case of two drug takers (d = 2), the expected payoff of players takes the form:

s, 1g 1
IT; zéz%—nci:Qa—rc
j=1

(52)

(S3)

If d = 1, one player is “clean” while the other takes drugs. In this situation the payoff of
the cheater becomes:

1
nr == a; —T;¢; =a—Trc
% 1 J
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while the payoff of the player that stays clean is:

2
1
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Now, comparing the results of (S2), (S3), (S4) and (S5) with the original pay-off structure
of [1] a perfect correspondence is readily observed. (See Figure S1)

Consequently, our extended multi player model is shown to represent the two-player case
correctly.

2 Proofs of Theorems in the main manuscript

Let us start from the expected payoff of player ¢ when he cheats with probability p;. Let D®
denote the number of players taking doping, not counting player i itself (note that this is a
random variable). The payoff function is then:

n—1 d+1 n—1 n
i i=1 Qi i Zi: @i
IT; = p; <§ P(DY = d)—% +11 — rici> +(1—p) <§ P(DY = d) == f; )
d=0

d o
% is the average prize received by a player that cheated if there are d cheaters

in total, and Ay = M is the average prize received by players that played fair. By applying
these definitions, the expressmn can be simplified as:

where Ay =

n—1 n—1
I, = p (Z P(D(i) =d)Ag1 — mci) + (1 —p;) <Z P(D(i) — d)Ad>
d=0

d=0

n—1
= Di Z P(D(i) = d) (Ad+1 - zzld) — p;T;c; + const.
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Taking the derivative:

ZP ) = d Ad—i—l — Ad) — T;C; (86)

029@ —

Since p; is constrained to the range [0; 1], the condition for a Nash equilibrium is that for
each player, exactly one of the following three cases must hold:

1. 8—“?anndO§pi§1

Op;

o1l _
2. 8—pi>0andpi—1
3. %—gj<0andpi20

Note that if we expand the sum in the derivative and spell out the P(D® = d) probabilities
exactly, we would find that the derivative of II; w.r.t. p; depends only on p; where j # ¢, and
their form is equivalent apart from the indices of the p;’s involved. Therefore, when we evaluate
combinations of the three conditions outlined above, we only have to decide how many players
will be treated according to the first, second or third conditions, without loss of generality.

Theorem 1. Given an instance of the n-player doping game, a common rc product for all
players, and a linear prize structure (i.e. a common b = ay — ay), the Nash-equilibria are as
follows:

1. Ewveryone cheats when rc < ™ b



2. Everyone plays fair when rc > ”T_lb.

3. Any pure or mized strateqy when rc = "T_lb.

Proof. When the prize structure is linear, we know that a; — as = a3 — as = ..., and that
a; = a; — (i — 1)b where b is defined as a; — as. This implies that

k—1

S a a— bk —1)

Ay = =——=a — — t1=a) — ————
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The general derivative in Equation (S6) is then simplified to:

5] PR , n—1 n—1
L P(DW — —rc= —
o, dzzo ( d)b 5 rc==b 5 re

It is now clear that the derivatives are independent of i, i.e. they are the same for all
the players. The derivatives are zero when rc = b”T_l, and since this constraint imposes no
restriction on the probabilities, it follows that any pure or mixed strategy is a Nash equilibrium
when rc¢ = b”T_l and the prize structure is linear. rc < b"T_l implies a positive derivative
for every player, leading to a situation where everyone cheats. Similarly, rc¢ > b"T’l yields a

negative derivative and everyone will play fair. O]

Theorem 2. Given an instance of the n-player doping game and a common rc product for all
players, the sufficient and necessary condition for the “k players cheat and n — k players play
fair” pure strategy to be a Nash-equilibrium is as follows:

Apsr1 — Ay <re < Ay — Ay
where A,,1 and A_, are defined to be —oco.

Proof. Without loss of generality, let us assume that players 1, 2, ..., k cheat and the rest play
fair. When we are in a Nash equilibrium and £ players cheat with probability 1, this means
that k players have no incentive for switching their strategy because their payoff function is
locally maximal. Similarly, for the remaining n — k players, they also have no incentive to
switch because their payoff function is locally maximal. If there were no limits on the range of
p; (i.e. the probability of cheating), the equations were as follows:

o,

Opi B

This means that the derivatives of the payoff function are zeros for everyone. However, since

p; is bounded from above by 1 and from below by zero, the derivative of the payoff function of

cheaters may actually be larger than or equal to zero, where being larger means that the player

would try to cheat even more frequently if that were possible. A similar train of thought shows

that the derivative of the payoff function of non-cheaters may actually be smaller than or equal

to zero, meaning that they would try to play even more fairly if that were possible. This yields
the following conditions to start out from:

0 for every 1



oll;

Op;
oll;

Op;

> 0 iti <k

<0 ifi>k

We use Equation (S6) to simplify them as follows:

1. For player ¢ where i < k, the player is cheating, and the number of other players who
are cheating is k — 1 with certainty (since all p; probabilities are either zeros or ones).
Substituting d = k — 1 into Equation (S6) gives us (A;C — Ak_l) —1r;c; > 0.

2. For player ¢ where ¢ > k, the player is playing fair, and the number of other players
who are cheating is k with certainty (since all p; probabilities are either zeros or ones).
Substituting d = k into Equation (S6) gives us (Ak+1 — Ak) —ric; <0.

We then assume a common rc¢ product and move r;¢; to the right hand side to obtain the
final equation:

App1 — Ap <re < Ay — A

This concludes our proof. O

3 Nash-equilibria in the three-player case

To describe the various Nash-equilibria we will find, we will use a simple encoding scheme
where each letter describes the behaviour of one player. Each letter may be D (doping with
certainty), F (plays fair with certainty), m (mixed strategy) or * (any pure or mixed strategy).
For instance, DDF describes a strategy where two players cheat and the third plays fair all the
time, while mmD is a strategy where two players play mixed strategies and the third cheats
all the time. The order of letters does not matter, mmD is the same as mDm or Dmm. The
difference between m and * is subtle but significant: when a player is marked by m, it means
that the player will assume a mixed strategy with an exact probability for cheating, while %
means that the player may take any pure or mixed strategy with any probabiity for cheating
without affecting its own payoff function.
In the three-player case, we know the following:

Ao=0 A —ay AQ:C”;“2 Agz—aﬁ‘;ﬁ“?’
- a;+as+a - as +a - -
02% L= 22 3 Ay = ay A;=0
2 —ay— . _ i _9
Al—Aozw AQ_A1:Q12&3 Ag_A2:W

We also know that

P(DW =0) = (1—po)(1—p3)=1—py—ps+ paps
P(DW =1) = ps(1—ps) +ps(L —p2) = p2 + ps — 2pps
P(DW =2) = pop,



The derivative is then

E)Hl 2@1 — Q9 — as a; — as ay + ag — 2&3
= (1 =p2 —p3+pops) ———F—— + (p2 + p3 — 2paps) +popy——— 2
Op1 3 2 3
2a1 —ax —a 2a —a; —a
= %"‘(m ‘l’ps)% + pap3 X 0 — ey
by — b 201 + 0
= (p2+ps3) 2 12 g

6 3

where b; = a; — a;.1. Note that the b;’s are just an alternate representation of the prize
structure as b; is the difference between the ith and the i+ 1th prize. The remaining derivatives
are the same but with different indices for p;, r; and ¢;, but the indices for b; stay the same:

o, by — by 2by + by
Oy (p1 + p3) G + 3 r1C1
Il by — b 2b, + b
WE = (P1+p2)26 L 13 2—7"101

3.1 Pure strategies
3.1.1 Case 1: everyone cheats (DDD)

This means that all the three players are according to condition 2. We have to decide whether
all the derivatives are non-negative (given that all cheat, p; = py = p3 = 1):

2b2 + bl - 37’101 Z 0
252 + bl - 37"262 Z 0
2b2 + bl — 3T303 Z 0

Therefore, this particular configuration (i.e. everyone cheats) is a Nash equilibrium if and
only if % > max; r;¢;. Increasing r;c; above % for at least one player eradicates this
configuration.

A special case is the case of linear prize structures where by = by = --- = b,_; = b, leading
to b > maxr;c;. In other words, if the expected loss of player ¢ when cheating is less than the
difference between two consecutive places in the prize ladder, then the player will cheat.

3.1.2 Case 2: two players cheat, one player plays fair (DDF)

Without loss of generality, we can assume that players 1 and 2 cheat and player 3 plays fair.
Thus, p1 +p2 =2, p1 + p3 = 1 and ps + p3 = 1. The equations to check are:

b1+ b

1_;_ 2—7’1C1 Z 0
b1 +b

1_;_ 2—7‘2C2 2 O
2

Bah <

Here it becomes easier to assume that r;¢; is independent of 4, yielding:



2 - = 3
The above equation may hold only when b; > by; in other words, when the prize structure
is convex or linear. If we assume the case of linear prize structure (i.e. by = by = b), we obtain
b > rc > b, which can happen only if rc = b. We will see later that rc = b collapses the game
into a configuration where all the strategies are equivalent anyway.

3.1.3 Case 3: one player cheats, two play fair (DFF)

Again, without loss of generality, we can assume that player 1 cheats and players 2 and 3 play
fair. Thus, p1 + p2 = 1, p1 + p3 = 1 and ps + p3 = 0. The equations are:

2b
ﬂ—ﬁq > 0
3

bl;b2—7“202 < 0
b1 +0b

1;— 2—7’303 S 0

Assuming r;c; = re:

2b
—1+b2 >rc> b £
3 - T2
Note that this can hold only when b; < b9; in other words, when the prize structure is
concave or linear.

3.1.4 Case 4: everyone plays fair (FFF)

In this case, we have p; = p, = p3 = 0, which leads to

2%, + b
%—mq < 0
2%, + b
%—m <0
2

blTW_Tg% <0

Therefore, this particular configuration (i.e. everyone plays fair) is a Nash equilibrium if
and only if % < min r;c;. Decreasing r;c; below % for at least one player eradicates this
configuration.

A special case is the case of linear prize structures which leads to b < minr;c;. In other
words, if the expected loss of player ¢ when cheating is greater than the difference between two
consecutive places in the prize ladder, then the player will play fair.

Let us take a step back now and examine what we have observed so far. The presence
or absence of various pure Nash-equilibria depend on where the value of the rc product falls
compared to 21tz bifhz apd Wiz - Purthermore, note that the thresholds are also equal to
Ay — Ay, Ay — Ay and Az — Ay, We will see that these thresholds will also determine the

behaviour of the model when we allow for mixed strategies as well.




3.2 Mixed strategies
3.2.1 Case 5: everyone plays a mixed strategy (mmm)

In this configuration, all the partial derivatives must be equal to zero:

by — b1 201 + bo

(p2 + p3) G + 3 = 1o
b, — b 2by +b

(p1 + ps3) 2 6 L 13 2 = T'2Co
b, — b 2by +b

(p1 + p2) 2 G -+ 13 2 = r3C3

When b; = by (i.e. the prize structure is linear), the first term is zero and we recover cases
1 and 4, respectively. Let us therefore assume that b; # by. This leads to:

67"101 - 4b1 — 2b2

P2 +p3 = by — b1
i . 67"202 — 4b1 — 2b2
PrTp3 = by — by
67‘363 - 4b1 — 2b2
prtp2 =
by — by

Again, assuming that r;c; = rc, we obtain
rc— by
b1 =Dp2 = D3 (bQ—bl)

We also have to ensure that 0 < p; < 1, otherwise this solution would not exist. Therefore,
this Nash equilibrium occurs if and only if

1 re—»b
- <
37 by —1b

2
< —
-3
which is equivalent to

2by + by < o< by + 2by
3 - 3
where we notice the same thresholds again as the ones we have seen for the pure case.

3.2.2 Case 6: one player cheats with certainty, others play a mixed strategy
(Dmm)

Without loss of generality, assume that player 1 cheats with certainty. The equations are:

bg—bl+2b1+b2

(p2 + ps) 6 3 ric1
by — b 2b; +b
(1+p3) 2 1 + 1 2 = ey
6 3
by — b 2b; +b
(1+p2) 2 6 1 + 13 2 = 1y



Again, when b; = by, the conditions recover case 3, so let us assume that b; # by. We then
have to distinguish two cases.

The first case is when b; > by, i.e. a convex prize structure. In this case, by — by < 0, so the
relation will turn in the first equation as we divide by a negative number:

67’161 — 4[)1 — 2[)2

p2+p3 < by — by
_ Gracy — 3b; — 3by

b3 = by — by
_ Grzez — 3by — 3by

P2 = by — by

Assuming a common ¢, this means that p, = py = or¢ — 3utb2 Hyt since we also have
! ba—b1 ba—b1’

to satisty the first equation, this will happen only if

12rc — 6b1 - 6b2 6rc — 4b1 - 2b2
by — by - by — by
12rc — 6b1 — 6[92 2 6rc — 461 — 2[?2
by + 2b
re > %

We also have to ensure that py and p3 are between 0 and 1:

0< 6re—3b1 —3by <1

ba—b1
02 67"0—361—3b2 zbg—bl
by + by > e S by + 2by
2 - 3

The other case is when by > by, i.e. the prize structure is concave. In this case, the relation
mark does not turn, but since p, and p3 were determined from the second and third equations
that do not contain the relation mark, the solution will be the same. Substituting p, and ps
back into the first equation yields rc > % Therefore, this Nash equilibrium will appear if
and only if

by + 2bs < o< b1 + by

3 - 2

3.2.3 Case 7: one player plays fair with certainty, others play a mixed strategy
(Fmm)

Without loss of generality, assume that player 1 plays fair with certainty. The equations are:

by —by 201+
201 20t 0

(p2 + p3) 5 3 < rea
bg—b1+2b1+b2 B

b3 6 3 = TC2
bg—b1+2b1+b2 B

D2 6 3 = T3C3



With a common re, the second and third equations yield py = pg = Sred=2b2 4n( to

ba—b1
2b1+bo
3

satisfy the first one, we also need rc¢ < . Since py and p3 must be between zero and one,

the complete set of conditions is:
by + bo < 2b1 + by

<rc<
2 3

3.2.4 Case 8: two players cheat with certainty, one plays a mixed strategy (DDm)

Without loss of generality, assume that players 1 and 2 cheat with certainty. The equations
are:

by —by 201+
2= 01 20t 0

(1+ps) 5 3 > ric
by — b 2b1 + b

(1 +p3> 2 6 ! + 13 2 T9Co
2by + by

T = T3C3

Assuming a common r¢, the third equation clearly places a constraint on the occurrence of
this NE — it will occur only for a particular value of rc. In that case, the first two equations
will prescribe an upper or a lower bound on p3, depending on the sign of by — b;.

When by > by, there will be a lower bound on ps3, i.e. p3 > % — 3%, but since we
know rc exactly from the third equation, this yields p3 > 1. Since p3 is a probability, the only
allowed value is p3 = 1, which is in fact case 1 (three players cheat with certainty). Thus, case
8 does not exist for concave prize structures.

When by < by, there will be a trivial upper bound on ps3, i.e. p3 < 1, which is not a restriction

on ps3, meaning that case 8 is better marked as the DDx case.

3.2.5 Case 9: two players play fair with certainty, one plays a mixed strategy
(FFm)

Without loss of generality, assume that players 1 and 2 play fair with certainty. The equations
are:

by —by 20, +0b
201, 20t 0

b3 6 3 ricy
bg—bl+2b1+b2

T9C

b3 6 3 2C2
2b1 + by

3 = T3C3

Similarly to case 8, case 9 will either collapse to case 4 (FFF) when by > by, or will collapse
to FFx if by < by.

3.2.6 Case 10: one player plays fair, one player cheats, the third is mixed (DFm)

Without loss of generality, assume that player 1 plays fair, player 2 cheats and player 3 is mixed.
The equations are:

10



by —by 201+
2= 01 20t 0

(1+p3) 5 3 < ra
by — b 2b b
P3261+ 1;2 > T2l
by + bo
9 = T3C3
Let us assume a common 7rc:
ps(ba —b1) < 0
(ps—1)(be—b1) > 0O

If by < by, the only solution is p3 = 0, collapsing this case into case 2 (DDF). If b; > by, any
p4 satisfies the equations, making it equivalent to DFx.

3.3 Summary of the three-player case

All the conditions we have obtained for rc¢ depended on three thresholds: w, % and

%. These are also equal to A; — Ay, As — A; and A; — A,. The behaviour of the model
will depend on the relation of rc to these thresholds. First, let us assume that b; < by, i.e. the
prize structure is concave. In this case, we have the following:

rc Cases of Nash-equilibria
Less than A; — A, DDD
Exactly As — A, DDD, DDF

Between A; — A, and A, — A;  DDF, Dmm, mmm

Exactly Ay — A, DDF, DFF, mmm with p = 0.5
Between A — Ay and A; — A, DFF, Fmm, mmm

Exactly A4, — A DFF, FFF

Greater than A; — Ay FFF

When the prize structure is convex, b; is larger than by, leading to the following cases:

11



rc

Cases of Nash-equilibria

Less than A; — Ay

EX&Ctly A3 — 1212

Between A; — A, and Ay — A

Exactly Ay — A4

Between As — A; and A; — A,

EX&Ctly Al — 1210

Greater than A; — Ay

DDD

DDx

DDF, Dmm, mmm

DFx%, mmm with p = 0.5

FFx
FFF

DFF, Fmm, mmm

For linear prize structures, by = by = b = A, — A; and we obtain:

rc

Cases of Nash-equilibria

Less than Ay — A
EX&Ctly A2 — Al

Greater than A, — A4

DDD
* K ok

FFF

Finally, we present an alternative representation of the the different types of Nash equilibria
on Figure S2. On this figure, each Nash equilibrium is represented by a box and Nash equilibria
corresponding to the same rc value are arranged in the same column. The value of the rc¢ product
increases from left to right. Arrows denote the “transition” of one type of Nash equilibrium
into another (for instance, a DDD type Nash equilibrium into Dmm) as the value of r¢ changes.
The upper panel contains the case of concave prize functions while the lower panel contains the

convex case.

4 Nash-equilibria in the four-player case

In the four-player case, we know the following;:

a1+ as +ag+ aq

Ag=0 A =a A2:a142ra2 A3:w Ay =
= a1 +az+ag+ags + as + a3z + ay as + ay
4 3 2
AI_AOZ3a1—a24—a3—a4:361+24b2+b3
A2_A1:3a1+a2—62a3—2a4:3b1+422—|—2b3
Ag—AQZ 2a1—|—2a26—a3—3a4 _ 2b1+4§2+3b3
A4_A3:CL1+CL2+CZ3—3CL4:b1+2b2+3b3

We also know that

4

12

4

A3:a4



P(D(l) =0) = (1—=p2)(1—=p3)(1—ps)
= 1 —po—ps — ps+ pap3 + paps + P3ps — P2P3Ps
P(DW =1) = pa(1 = ps)(1 = pa) + (1 = pa)ps(l — pa) +
(1 —p2)(1 — p3)ps
= P2 — P2P3 — P2P4 + P2P3Pa + P3 — P2P3 — PapPa + P2pPapa +
D4 — P2Pa — P3P4 + P2pP3Pa
= P2+ D3+ Pps— 2pap3 — 2paps — 2p3pa + 3papspa
P(DW =2) = pops(1 —pa) + pa(1 — p3)ps+ (1 — pa)pspa
P2P3 + P2pa + P3pa — 3pap3pa
P(DW =3) = pypsp

The derivative of the payoff function II; with respect to p; is then

3H1 . b3 — 2b2 + b1

(p2p3 + papa + pspa) +

(9p1 a 12
bs + 2bs — 3b
%(Pz + p3 + pa) +
3b1 + 2by + b3
— A

4.1 Pure strategies
4.1.1 Case 1: everyone cheats (DDDD)

We have to decide whether all the derivatives are non-negative (given that all cheat, p; = ps =
p3=ps=1):

by + 2by + 3b3 — 4ricy
by + 2by + 3b3 — 4raco
b1 + 2by + 3bs — 4rscs
b1 + 2by + 3b3 — 4rycy

(AVARAVAR VARV
o o o o

Therefore, this particular configuration is a Nash equilibrium if and only if 2t2bd3s >
max; r;¢;; note that the left hand side is equal to Ay — A3, which echoes the rule we have seen

for the three player case, where the threshold was As — As.

4.1.2 Case 2: three players cheat, one player plays fair (DDDF)

Without loss of generality, we can assume that players 1, 2 and 3 cheat and player 4 plays fair.

Thus, pips = paps = pips = 1, pips = paps = p3pa = 0, p1 +pa+p3s = 3, pr +p2 +ps =
p1+ p3 + ps = p2 + p3 + ps = 2. The equations to check are:

13



2b1 + 4by + 3b3

6 —Tric Z 0
201 + 4bs + 3b
1+62+ 3—1"202 > 0
201 + 4bs + 3b
1+62+ 3—r303 > 0
by + 2b b
bit26 430 o
4
Assuming a common rc yields:
2b1 + 4by + 3bs3 by + 2by + 3b3
6 >rc> —4

where the left hand side is equal to A3 — A, and the right hand side is equal to A, — As.
Note that for linear prize structures, this can happen only if rc = %b.

4.1.3 Case 3: two players cheat, two play fair (DDFF)

Without loss of generality, we can assume that players 1, 2 cheat and players 3 and 4 play fair.
The equations to check are:

301 + 4bs + 2bs

5 —ric; > 0
301 + 422 + 2b3 ey > 0
20, + 422 + 3b3 ey >0
201 + 422 + 3b3 Crer <0

Assuming a common rc yields:

3by + 4by + 2b3 2by + 4by + 3b3
>rc>
6 - 6
where the left hand side is equal to Ay — A; and the right hand side is equal to As — A,.
For linear prize structures, this will collapse into rc = %b as above.

4.1.4 Case 4: one player cheats, three play fair (DFFF)

Without loss of generality, we can assume that player 1 cheats and players 2, 3 and 4 play fair.
The equations to check are:

3b1 + 2by + b3

1 —ricqg > 0
3b1 + 422 +2b; ey < 0
3b1 + 422 +2b; ey <0
3b1 + 422 +2b; res <0
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Assuming a common rc yields:

361 + 2b2 + bg 3b1 + 4b2 + 2b3
—_— > 1rc>
4 -~ 6
where the left hand side is equal to A; — Ay and the right hand side is equal to Ay — Aj.
For linear prize structures, this will collapse into rc = %b as above.

4.1.5 Case 5: everyone plays fair (FFFF)

We have to decide whether all the derivatives are negative (given that all play fair, p; = py =
p3 =ps = 0):

3by +2by + b3 —4ricg < 0
3b; + 2by + b3 —4dracy < 0
3by + 2by + b3 —4drscs < 0
3by + 2by + b3 —4dryes < 0

Therefore, this particular configuration is a Nash equilibrium if and only if W <

min; r;¢;; note that the left hand side is equal to A; — Ay, which echoes the rule we have seen
in case 4 of the three-player case.

Let us take a step back now again and examine what we have observed so far. The pres-
ence or absence of various pure Nash-equilibria depend on where the value of the rc product
falls compared to 31F2bths - 3bitdbot2by - 20144bat3hs g bit202430s - Fyrthermore, note that the
thresholds are also equal to A, — Ay, Ay — Ay, A5 — Ay and A, — A;. We will encounter these
thresholds later when we allow for mixed strategies as well.

4.2 Mixed strategies
4.2.1 Case 6: everyone plays a mixed strategy (mmmm)

In this configuration, all the partial derivatives must be equal to zero. Let’s see where this
leads:

by — 2bs + b
(paps -+ Papa + ng)%
by + 2bs — 3b
(p2 +ps + P4)%
3b1 + 2by + b3
-1 = TG

and so on for ryco, r3¢3 and r4cy. Here we assume a common rc again. For sake of simplicity,
let us denote b3 — 2by + by with Cy, bs + 2by — 3by with C5 and 3by + 2by + b3 with Cs:

( )C1 4+ (p2 +p3+ps)Co = 12rc — 3C5
(p1ps + p1pa + p3pa)CrL + (p1 4+ ps + ps)Cy = 12rc — 3C5
(p1p2 + p1pa+ popa)Ch + (pr+ p2 +pa)Co = 12rc — 3C;
(p1p2 + p1p3 + pap3)Cr + (p1 + P2 +p3)Cy = 12rc — 3C4

Dap3 + Dapa + p3ps)Cy

Because of the common rc, all the players are equivalent and all the equations are symmetric
so we have no reason to assume that p; # py or py # ps or ps # py. (Proof by contradiction:
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suppose that p; # po; in this case, the left hand side of the first two equations are different but
the right hand side are the same, so they cannot be both satisfied). Switching to a common p
gives us a single quadratic equation:

Cip* 4+ Cop+Cs —4dre=0

and the two solutions are:

B 20, C,

—02 + \/022 — 40103 + 16017”0 02 CQ 2 03 —4rec
b= = —+ _
201 2C’1

However, since we also know that p must be between 0 and 1, we can bound rc¢ from above
and below to ensure that. Let us assume that p = 0; in this case, r¢c must be exactly C3/4 =

w = A; — Ay. Let us now assume that p = 1; in this case, r¢ must be % =
b1 +2by+3bs _
1 42 3 A4 _

As. It can easily be shown that any rc between these two extremes will yield
a solution for p between 0 and 1, and that there will be only one such solution because the
other solution of the quadratic equation will fall outside the allowed region.

When we compare this case with case 5 (mmm) of the three-player case, we can see that
the rc region is similar as it fills the space on the rc axis between the “everyone cheats” and
the “everyone plays fair” region. However, a significant difference is that in the three-player
case, the actual value of p was a linear function of r¢, while in this case it depends on y/rc. We
conjecture that in the general n-player case, the value of p will depend on (rc)!/("=2),

Finally, we can evaluate what happens when the prize structure is linear. In this case,
Cy = Cy = 0 (since all the b’s are equal), so the equation is not quadratic any more; we obtain

56:7“0

4.2.2 Case 7: three players cheat with certainty, one plays a mixed strategy
(DDDm)

Without loss of generality, assume that players 1, 2 and 3 cheat with certainty. The equations
are:

(14 2p4)C1 + (24 pg)Cy > 12rc — 3C3

Cl + 02 + Cg 4rc

The second equation gives us a condition that must hold irrespectively of the actual value of
p4; it dictates that w++3b3 = A, — A3 = rc. When this holds, the first equation is simplified
to

(pa —1)(2C1 + C5) > 0

and since py; < 1 (note that p, plays a mixed strategy; we have already treated the case of
ps = 1 in case 1), it follows that we need 3b3 — 2by — by < 0. Therefore, this Nash equilibrium
arises if the following two conditions both hold at the same time:

1. T‘C:A4—A3

2b2+b
2. by < Laib
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If both of the above conditions hold, any p, will satisfy the equations (including p, = 0 or
ps = 1, which were already shown to be Nash-equilibria in Cases 1 and 2). Since any py is
suitable, this strategy then becomes DDDx.

For convex prize functions (by > by > bs), the second condition trivially holds and all we
need is r¢ = A, — As. For linear prize functions, r¢ becomes %b. For concave prize functions
(by < by < b3), the second condition will never hold (unless b; = by = b3) and this case will not
be a Nash-equilibrium.

4.2.3 Case 8: two players cheat with certainty, one plays fair with certainty, one
plays a mixed strategy (DDFm)

Without loss of generality, assume that players 1 and 2 cheat with certainty, and player 3 plays
fair. The equations are:

p4C1 + (1 + p4)CQ > 12rc — 303
(1 + 2294)01 + (2 +p4)02 S 12rc — 303
Ci+2Cy = 12rc— 30,

Again, the third equation will give us a necessary condition for this configuration to be a
Nash-equilibrium: rc¢ = A3 — A;. When this holds, the remaining two equations are as follows:

(pa — 1)(C1 + Cy)
p4(201 + 02)

VAN
o

The implications are that C; + Cy < 0 and 2C; + C5 < 0. Substituting C; and Cy back
yields the following two conditions for this Nash-equilibrium, both of which must be satisfied:

1. re= Ag - AQ
2. by < min(by; 22t),

If the above conditions both hold, any p, will satisfy the equations, including ps = 0 or
ps = 1, which were already treated in Cases 2 and 3. Since any p4 is suitable, this strategy
then becomes DDFx.

For convex prize functions (by > by > bs), the second condition trivially holds and all we
need is rc = As — A,. For linear prize functions, rc becomes %b. For concave prize functions
(by < by < b3), the second condition will never hold (unless b; = by = b3) and this case will not
be a Nash-equilibrium.

4.2.4 Case 9: one player cheats with certainty, two play fair with certainty, one
plays a mixed strategy (DFFm)

Without loss of generality, assume that player 1 cheats with certainty, and players 2 and 3 play
fair. The equations are:

p402 2 12rc — 303
paCi + (1 +p1)Cy < 12rc—3C;
Cg = 12rc— 303
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Again, the third equation will give us a necessary condition for this configuration to be a
Nash-equilibrium: r¢ = Ay — A;. When this holds, the remaining two equations are as follows:

Co
0

PpaC
pa(C1 + Cs)

IN IV

The first equation implies that Cy < 0 (since otherwise p; would have to be larger than 1,
which is impossible). This is equivalent to bs + 2bs < 3b;. The second equation implies that
Cy + Cy < 0 (again, otherwise ps would have to be negative, which is impossible). This is
equivalent to b3 < by. Therefore, this Nash equilibrium arises if the following two conditions
hold:

1. re = AQ — Al
2. bl Z maX(bg; %)

If the above conditions both hold, any p, will satisfy the equations, including ps = 0 or
ps = 1, which were already treated in Cases 3 and 4. Since any p4 is suitable, this strategy
then becomes DFFx.

For convex prize functions (by > by > b3), the second condition trivially holds and all we
need is rc = A, — A,. For linear prize functions, rc becomes gb. For concave prize functions
(by < by < b3), the second condition will never hold (unless b; = by = bs) and this case will not
be a Nash-equilibrium.

4.2.5 Case 10: three players play fair with certainty, one plays a mixed strategy
(FFFm)

Without loss of generality, assume that players 1, 2 and 3 play fair with certainty. The equations
are:

p402 S 127’0—303
0 = 12r¢— 3C5

The second equation says that this is a Nash-equilibrium only if r¢ = W = A, — A,.
The first equation dictates that in this case, Cy must be non-positive (because ps is non-negative
and the right hand side is zero). Therefore, this Nash equilibrium arises if the following two
conditions hold:

1. T‘C:Al—f_lo

2ba+b:
2. by > 2atbs,

If both the above conditions hold, any p, will satisfy the equations, including p, = 0 or
ps = 1, which were already treated in Cases 4 and 5. Since any p, is suitable, this strategy
then becomes FFFx.

For convex prize functions (by > by > bs), the second condition trivially holds and all we
need is r¢ = A; — Ay. For linear prize functions, r¢ becomes %b. For concave prize functions
(b1 < by < b3), the second condition will never hold (unless b; = by = bs) and this case will not
be a Nash-equilibrium.
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4.2.6 Case 11: two players cheat with certainty, two play a mixed strategy (DDmm)

Without loss of generality, assume that players 1 and 2 cheat with certainty. The equations
are:

(p3 + pa + p3pa)C1 + (1 + ps + pa)Co 12rc — 3C5
(p3 + pa + p3pa)Cr + (1 + p3 + pa)Co 12rc — 3C3
)
)

(AVARAVS

(1 + 2p4)01 + (2 + P4 02 = 12rc— 303
(]_ + 2p3)01 + (2 +p3 CQ 12rc — 303

Again, the last two equations are symmetric w.r.t. p3 and ps so we can replace them with
a common p. The first two equations collapse into one:

(2p+p*)C1 + (14+2p)Cy > 12r¢ — 3C3
(14 2p)Cy + (2+p)Cy = 12rc—3Cs

Let us work out the second equation first:

(1+2p)C1+ (2+p)Cy = 12rc—3C4
(201 + CQ)p + Cl + 202 = 12rc— 303
12r¢ — 3C5 — 2C5 — C}
201 + Oy
12rc — 4by — 8by — 6bs
3b3 — 2by — by

p:

p:

In order for the first equation to be true, we also need:

2p+p*)Ci+ (142p)Cy > (1+42p)Ch + (2+ p)Cs
P —=1)Ci+(p—-1)C > 0
p=Dp+1)C1+Cy) > 0
p+1)C1+Cy < 0
p(bs — 2by +by) < 2b, — 2bs

At this stage, we must distinguish between three sub-cases:

o If by > 2by — by, it follows that p < %

o If by < 20y — by, it follows that p > 220

o If by = 2by — by, the entire left hand side is zero, so we need b3 < b;.
We also have to ensure that the calculated p is between 0 and 1. p > 0 is satisfied when

TC>A3—A2 and 3b3>2b2+b1

or
re < As — A, and 3bs < 2by + by
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while p < 1 is satisfied when
TC<A4—A3 and 3b3>2b2—|—bl

or
re> Ay — A and 3bs < 2by + by

Note that we do not consider p = 0 or p = 1 because they have already been treated in
cases 1 and 3. To sum it all up, this Nash-equilibrium will arise if the following conditions all
hold at the same time:

__ 12rc—4b1 —8bo—6b3
Lop= "5

2. Ag—Ang’C<A4—A3%Hd363>2b2+bl
or Ay — A3 <rc< Az — Ay and 3bs < 2by + by

2b1—2b
3. by > 2by — by and p < m

_ 2by —2bs
or by < 2by — by and p > T

or by = 2by — by, in which case p = Srerbi=10bz

2bo—2b1

4.2.7 Case 12: one player cheats with certainty, one plays fair with certainty, two
play a mixed strategy (DFmm)

Without loss of generality, assume that player 1 cheats with certainty and player 2 plays fair
with certainty. The equations are:

P3paCh + (p3 + pa)Co 12rc — 3C5

(p3 + pa + p3pa)Cr + (1 + p3 + pa) Oy 12rc — 3C4
paCi + (1 4+ps)Cy = 12rc — 3C3

psCr + (1 +p3)Cy = 12rc—3C5

IN IV

Again, we can assume a common p = p3 = p4 because of the last two equations:

Cip? +2Cop > 12r¢ — 30,
Cip* +2(C1+ Cy)p+Cy < 12rc—3Cs
(Cl -+ 02)]9 -+ 02 = 12rc— 303

Let us work out the third equation first:
. 12rc — 6b1 - 8()2 - 4b3
b= 2bs — 2b

Since we know that 0 < p < 1, this Nash-equilibrium can arise only if

AQ—A1<7’C<A3—A2 and by > by

or
A3-A2<TC<A2—A1 and b3<b1

Additional conditions will arise from the first two equations:
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Clp2 + (Cy — Cy)p — Oy
01]92 + (Cl + CQ)p

IN IV

Let us start with the second equation:

p(Cilp+1)+C2) < 0
Cip < —-C, -0y
p(bg — 2b2 + bl) S 2b1 — 2b3

which holds if bg 4 b; > 2by and p < bzbli or if b3 +b; < 2by and p > bzbli When

3—2ba+b1 3—2ba+b1

bs + by = 2by, the left hand side is zero and we are left with b; > bs.
The other equation yields two roots:

(Ch— Cy) £ /CZ+ CZ+2C1C;  Cy — Cy+ (Cy + Cy)

Pr2 = 20, - 20,
ppo= 1
Cy 3b; — 2by — b3
P2 = = —

Oy by —2by+ by

Now, if (7 < 0, the equation is satisfied if p is between p; and p,, and if C; > 0, the
equation is satisfied if p is less than min(py, p2) or greater than max(p;, p2). Let’s cover all the

four cases:
o If 7 <0 and Cy < 0, py is negative, so every p between 0 and 1 satisfies the equation,
including p = 12TC_26Z’31:28bbf_4b3 that we already determined.
o If (4 <0 and Cy > 0, py is positive. If Cy < —C1, we have p > —g—f, otherwise there is

no valid p which gives a solution.

If C7 > 0 and C5 < 0, py is positive. If Cy < —C, we have p < —g—f, otherwise there is
no valid p which gives a solution.

If ¢ > 0 and Cy > 0, ps is negative, which excludes any valid p between 0 and 1 from
being a solution.

To sum it all up, this Nash-equilibrium will arise if the following conditions all hold at the
same time:

12rc—6by —8bo —4b3

L p= 2b3—2b,

2.

AQ—A15T0<A3—A2§Hdb3>b1
or A3 — Ay <rc< Ay — Ay and b3 < by

2b1—2b
by > 2by — by andp<b3_12ﬁ

2b1—2b
or by < 2by — by and p > =0

or by = 2by — by, in which case p = 12re=2b1—16b2

4by—A4by
b3 < Hlll’l(2b2 — bl, 3b; — 2b2)

or by < min(by;2by — by) and p > %

or by > 2by — by and b3 < by andp<%
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4.2.8 Case 13: two players play fair with certainty, two play a mixed strategy

(FFmm)

Without loss of generality, assume that players 1 and 2 play fair with certainty. The equations

are:

p3paCh + (p3 + pa)Co
p3paCh + (p3 + pa)Co
paCy
p3Cy

< 12rc—3C4
< 12rc— 304
12r¢ — 3C5
12rc — 3C5

Again, the last two equations are symmetric w.r.t. p3 and ps so we can replace them with

a common p. The first two equations collapse into one:

p2Cy +2pCy < 12r¢ — 3C,
pCy = 12rc — 3C5

Let us work out the second equation first:

. 12rc — 9b1 — 6b2 — 3b3
P T 1 2b, — 3y
In order for the first equation to be true, we also need:

(S7)

Cip? + Cap
p(Cip + Cs)
Cip+ Cy

p(bs — 2bg + by)

VAN VAN VAN VAN

0
0
0
3b1 — 20y — b3

At this stage, we must distinguish between three sub-cases:

o If by > 2by — by, it follows that p < 3=2b2"bs

b3 —2bo+by °

o If by < 2by — by, it follows that p > 31=202"bs

b3 —2ba+b1 °

e If b3 = 2by — by, the entire left hand side is zero, so we need 3b; > 2by + bs.

We also have to ensure that the calculated p is between 0 and 1. p > 0 is satisfied when

re> A, — A and

or
re < A — A and

p < 1 is satisfied when

re < Ay — Ay and

or
re> Ay — Ay and

b3 + 2b2 > 3b1

b3 + 2by < 3by

bs + 2by > 3by

b3 + 2b2 < 3b1

Note that we do not consider p = 0 or p = 1 because they have already been treated in
cases 3 and 5. To sum it all up, this Nash-equilibrium will arise if the following conditions all

hold at the same time:
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__ 12r¢c—9b1 —6b2—3b3
L b= b3 +2bo—3b1

2. Al—AofTC<A2—A1 %Hdb3+2b2>361
or Ay — Ay <rc< Ay — Ay and b3 + 2by < 3b;

3b1 —2b2—b,
3. by > 2by — by and p < m

_ 3by —2by—bs
or bg < 2by — by and p > ooy

or by = 2by — by, in which case p = 12re=6b1-12b;

4by—4bq

4.2.9 Case 14: one player cheats with certainty, others play a mixed strategy
(Dmmm)

Without loss of generality, assume that player 1 cheats with certainty. The equations are:

(p2p3 + papa + p3pa)Cr + (p2 + ps +pa)Co > 12rc — 3C;
(p3s +pa+psps)Cr+ (L +ps +p1)Co = 12rc —3C;
(p2 4+ pa+paps)Cr+ (1 +pa+ps)Co = 12rc — 3C5
(p2 + p3 + paps3)C1 + (1 +pa + p3)Cy = 12rc — 3C5

Again, the last three equations are symmetric w.r.t. ps, ps and ps so we can replace them
with a common p:

Cip*+Cop+Cs—4re > 0
01]92 + 2(01 + Cg)p + CQ + 303 —12rc¢ = 0

Both quadratic equations have two roots; let us work out the roots of the second equation
first:

P=="¢ C Cy

Since p must lie beween 0 and 1, we can also use the second equation to bound rc¢ from
above and below. Let us first assume that p = 0; in this case, rc = % = A, — A;. Similarly,
when p = 1, rc becomes % = A, — A;. Therefore, it must be ensured that rc is between
Ay — A and Ay — As in order for this Nash-equilibrium to arise.

The first equation also gives us some further necessary conditions on rc; the roots here are

similar to the roots of Case 6 (note that the equation is the same):

O+ Gy jE\/((J1+(J2)2_ Cy +3C5 — 12rc

_Cy+\/CZ_4C,Cy + 16Cre G \/( , )2 Cy — dre
P2 = = + -2

201 _201 2_C'l Cl
When C; < 0, p must be between p; and ps; when C7 > 0, p must be less than min(py, p)
or greater than max(py, pa).
4.2.10 Case 15: one player plays fair with certainty, others play a mixed strategy

(Fmmm)

Without loss of generality, assume that player 1 plays fair with certainty. The equations are:
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IN

(p2ps + papa + p3pa)Cr + (p2 + p3 + pa)Co 12rc — 3C5
P3paCh + (3 + pa)Cy 12rc — 303
papaCi + (p2 + pa)Cy = 12rc—3C5
pop3Ch + (po + p3)Co = 12rc — 3C5

Again, the last three equations are symmetric w.r.t. ps, ps and ps so we can replace them
with a common p:

C1p? + Cyp + Cs — dre <
Cip? 4+ 2Cop + 3C5 — 12r¢ =

Both quadratic equations have two roots; let us work out the roots of the second equation

first:
02 CQ 2 303 — 12rc
p=—— + _Z I
& @ 4

Since p must lie beween 0 and 1, we can also use the second equation to bound rc¢ from
above and below. Let us first assume that p = 0; in this case, rc = % = A, — Ay. Similarly,
when p = 1, rc becomes W = A;— A,. Therefore, it must be ensured that rc is between
A; — Ay and A; — A, in order for this Nash-equilibrium to arise.

The first equation also gives us some further necessary conditions on rc; the roots here are
similar to the roots of Case 6 (note that the equation is the same):

P12 =

- 20, Ci

—Cy £ /(3 —4C\Cy +16Ce _ Gy [ G\ Cs—drc
2Cy 2¢

When €] > 0, p must be between p; and py; when C; < 0, p must be less than min(p;, p2)
or greater than max(py, pa).

4.3 Summary of the four-player case

All the conditions we have obtained for rc depended on four thresholds: A; — Ay, Ay — Ay,
As — Ay and Ay — As. The behaviour of the model will primarily depend on the relation of rc
to these thresholds as each region allows only specific types of Nash equilibria. Note that some
of the cases as discussed above also depend on other criteria that are mostly related to the b;
variables that define the shape of the prize function.

In the three-player case that we discussed before, prize functions were categorized into three
classes (concave, convex and linear ones) depending on the relation of b; to by. In the four-player
case, we have by, by and b3, therefore the classification is not so straightforward. However, we
can say that “realistic” prize functions are typically convex (i.e. by > by > b3), and we can also
evaluate linear (b; = by = b3) and concave (by < by < b3) prize functions to complement our
analysis and to make it comparable with the three-player case.

Let us start with the concave case:
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rc

Cases of Nash-equilibria

Less than Ay — As

Exactly Ay — As

Between A, — A3 and A5 — A,
Exactly A3 — A,

Between A3 — Ay and Ay — A,
Exactly Ay — A,

Between As — A; and A; — Ay
Exactly 4; — A

Greater than A; — Ay

DDDD

DDDD, DDDF

DDDF, DDmm, Dmmm, mmmm

DDDF, DDFF, Dmmm, mmmm

DDFF, DFmm, Dmmm, Fmmm, mmmm
DDFF, DFFF, Fmmm, mmmm

DFFF, FFmm, Fmmm, mmmm

DFFF, FFFF

FFFF

If the prize function is convex, the above table will look slightly different:

rc

Cases of Nash-equilibria

Less than Ay — As

Exactly Ay — A

Between Ay — A3 and A; — A
Exactly A3 — Ay

Between A; — Ay and Ay — A
Exactly 4, — A4

Between As — A; and A; — Ay
Exactly A; — A

Greater than A; — Ay

DDDD

DDDx

DDDF, DDmm, Dmmm, mmmm

DDF*, Dmmm, mmmm

DDFF, DFmm, Dmmm, Fmmm, mmmm
DFFx*, Fmmm, mmmm

DFFF, FFmm, Fmmm, mmmm

FFFx

FFFF

For linear prize functions (b = b; = by = b3), the table is simplified to the following as all
the thresholds collapse into a single one:

Cases of Nash-equilibria

rc
Less than %b DDDD
Exactly %b kK Kk
Greater than %b FFFF

Finally, we present an alternative representation of the the different types of Nash equilibria
on Figure S3. On this figure, each Nash equilibrium is represented by a box and Nash equilibria
corresponding to the same rc value are arranged in the same column. The value of the rc product
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increases from left to right. Arrows denote the “transition” of one type of Nash equilibrium
into another (for instance, a DDDD type Nash equilibrium into Dmmm) as the value of rc
changes. The upper panel contains the case of concave prize functions while the lower panel
contains the convex case.
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5 Figures
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D ND
1
> a-rc 0
w)
1
Sa-rc a-rc
1
a-rc Sa
Z
w)
0 S a

Figure S1: The original pay-off matrix from [1].
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Figure S2: Nash equilibria in the three-player doping game as a function of the value of rc.
Each Nash equilibrium is represented by a box. Nash equilibria with the same rc product are
in the same column. rc increases from left to right. An arrow points from one Nash equilibrium
into another if changing rc transforms a Nash equilibrium into another one.
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(DDDF }—>(DDDF }—>(DDDF }—>(Fmmm }—Fmmm }—>Fmmm
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Concave

Figure S3: Nash equilibria in the four-player doping game as a function of the value of rc. Each
Nash equilibrium is represented by a box. Nash equilibria with the same rc product are in the
same column. rc increases from left to right. An arrow points from one Nash equilibrium into
another if changing rc transforms a Nash equilibrium into another one.
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