Error model

Data scatter added to theoretical impedance spectra was modeled as function of corresponding frequency and transepithelial resistance R^{T} . The model is based on standard deviations (SDs) of Z^{re} and Z^{im} , respectively, which were modeled for each frequency and expressed as % of the DC resistance value.

For Z^{re} at frequency f, a second-order Fourier series (n=2) was employed:

$$SD_{re}(f) = a_0 + \sum_{i=1}^{n=2} a_i \cdot \cos(nwf) + b_i \cdot \sin(nwf)$$
(Eq. S14)

where w= $5.353*10^{-5}$, a₀=4.848, a₁=-4.11, b₁=-0.8092, a₂=-0.3583, and b₂=0.2014 were determined as best fit to the measured data. For Z^{im} at frequency f, a fourth-order polynomial function (n=4) was used:

$$SD_{im}(f) = a_0 + \sum_{i=1}^{n=4} a_i \cdot f^i$$
 (Eq. S15)

where $a_0=0.1889$, $a_1=0.0002737$, $a_2=1.863 \cdot 10^{-9}$, $a_3=-1.906 \cdot 10^{-13}$, $a_4=2.267 \cdot 10^{-18}$ were determined as best fit to the measured data. To account for dependence of data scatter on R^T , SD_{re} and SD_{im} dynamics at 1.3 Hz were approximated by:

$$SD_{re}(1.3Hz) = 0.636^{R^{T}} - 0.3278$$
 (Eq. S16)

$$SD_{im}(1.3Hz) = 8.7008^{R^{T}} - 0.8689$$
 (Eq. S17)

This model was used to substitute a_0 in Eqs. A1 and A2 with $a_0(R^T) = a_0 + SD_{re}(1.3Hz)$ and $a_0(R^T) = a_0 + SD_{im}(1.3Hz)$, respectively, where a_0 (obtained from $R^T \approx 500 \ \Omega \cdot cm^2$) had been normalized by $SD_{re}(1.3Hz)$ or $SD_{im}(1.3Hz)$ obtained at $R^T \approx 500 \ \Omega \cdot cm^2$, respectively.