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1 Data and Methods

1.1 The dataset

The data used is in this work originates from a reality mining panel collected
in Finland during 2010. In total more than 500 persons participated with their
mobile phones. However, as became clear during the processing of the data,
not all users participated long enough to provide useful data for the analysis by
methods explained in this work. In order to participate, a user had to install
a special monitoring software on his/her phone. This software was designed
to collect a broad amount of information about a users mobile phone usage.
Among these was also the GSM base-station the mobile is connected to (for
basics of GSM network see [1]). Other information that was collected included
for example log information of phones and messages, bluetooth encounters and
calendar information. The software sent the gathered data on a regular basis
to a data collection server.

The location part of the dataset, the base-station timestamps, were collected
in the following manner: The current base-station for a mobile was logged after
each handover — in addition to this, all except the very first versions of the
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reality mining software logged the current base-station at least once every 30
minutes. A few random lines of the raw location data are shown below.

User ID ISO-timestamp Basestation ID

95xxx 2010-xx-xx 21:08:35 1398

95xxx 2010-xx-xx 21:09:26 1400

95xxx 2010-xx-xx 21:09:44 1398

95xxx 2010-xx-xx 21:18:43 7350

...

The dataset contained also the coordinates of all occurred base-stations. Thus
a users location can be estimated as the location of the base-station the users
mobile is currently connected to (cell ID positioning see e.g. [2]). The other
available data was provided in a similar format with the user ID, time stamp
and the actual data entry in one flat file for each type of data collected.

The dataset was anonymized in such a way that participants were distin-
guished only by numerical identifiers (user ID). Real phone numbers of the
participants and the like were not available to the researchers. In addition to
this, during the whole scope of the study, privacy issues were a major concern
and the publishing of any material that could be used to identify any individual
participants (e.g. detailed location records) has been avoided.

1.2 Location analysis

It was noticed that while being most of the time plausible, there were some clear
errors in the raw location data. These included for example jumps over several
hundreds of kilometers in a few seconds and a jump back to the origin within
another few seconds. There are several sources where these errors might come
from, for example: wrong timestamps, wrong mappings between tower ID and
location or a disturbed connection to the data server. Before proceeding any
further, these errors were filtered out.

The data cleaning was done in the following way: If the distance of two
successive locations (base stations) was longer than 100 km and the time interval
less than 30 minutes (corresponds to a speed of at least 200 km/h) the later
location is removed. All directly following locations with the same base-station
where removed as well. Also all locations with wrong timestamps not within
the actual measurement period were removed. These were caused due to wrong
time settings in a users mobile for example due to a hard reset. The procedure
as explained above proved to work well in removing the clear errors from the
raw position data.

Due to issues like repeated handovers between neighboring cells (cell jitter
see [3]), the raw cell id location information does not work well for the purposes
of this work. As it turned out there has been already quite a lot research about
the place definition problem. We are now using two different algorithms.

In order to make good predictions on the behaviour the definition of places
should be as accurate as possible. In a bad place definition for example HOME
(assuming here that the person under consideration has only one home) could
be split into two separate positions. A move from HOME1 to HOME2 would
not be of much sense and would forge the movement pattern of this particular
user.

The first algorithm (Fig. 1) is a slightly adjusted version of Laasonens offline
algorithm [3]. This algorithm uses the initial base station data and places are
defined as clusters of base stations. The algorithm basically tries to detect
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Supplementary Figure 1: A few important places detected by the base sta-
tion approach (def1). A place is defined as a set of base stations. The drawing
pins present the positions of base stations. Each color is one location.

clusters of base stations in which there are many oscillations. A problem with
this method that the initial clusters might overlap. However the places might
become too large, if one simply merges all overlapping clusters. A slightly
modified version (online version) of this algorithm is able to run on a users cell
phone without knowledge of the locations of the base stations.

1.2.1 First approach

Fingerprint based methods (see e.g. [6] [3, 4, 5]) work well for the location data
at hand. In this work Algorithm 1, which is the off-line clustering algorithm by
Kari Laasonen [3] with two slight modifications, is used for obtaining individual
places. Basically this algorithm goes through the sequence of base-stations and
groups the base-stations with frequent oscillations between them into clusters
— these clusters are the extracted places. The reasoning behind this is that the
mobile of a user staying at one place, will connect to one of the closest base-
stations and occasionally switch to one of the other closest base-stations. It is
the set of these closest base-stations that is searched for. In Algorithm 1 S is the
sequence of base-stations that is gone through, R is the cluster of base-stations
that is currently tested, T is the set of tested clusters (T ⊂ P(S)) and P is
the set of accepted clusters (P ⊂ T ). γ(R) is the ratio function, a high value
of γ(R) indicates frequent oscillations between the cells in R — the notation is
the same as in the original paper [3], where the algorithm is explained in more
detail. The modifications are discussed below.

The first modification is that an additional condition has been added which
forbids the clusters to grow geographically too large (line 8 in Algorithm 1).
This can be done since the position information for each base-station is known
in our case. In particular the condition states that the distance between any two
base-stations in the same cluster can not be greater than 3 km. The purpose
of this rule was to neglect clusters too large to represent any single meaningful
places. Test runs verified that the modification improved the results.
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The second change is that the maximality of r, which holds the value of
the ratio function γ(R) of the corresponding cluster, is not tested explicitly
on all subsets of R — as it is the case in the original definition. Instead r is
only compared to the highest value of the same iteration over k (line 13 and
14 in Algorithm 1). This change was done since the comparison of all subsets
was computationally too expensive in the implementation. As a side effect
additional clusters are added to P . These clusters and possible overlaps are
handled separately from the initial algorithm: First P is sorted by the values

Algorithm 1 The used algorithm for detecting meaningful places

1: k ← 1
2: for i← 2 to |S| do
3: R← {si}
4: for j ← i− 1 downto k do
5: R← R

⋃
{sj}

6: if R /∈ T then
7: T ← T

⋃
{R}

8: if diam(GR) > 2 or max{d(si1, si2) > 3 km | si1, si2 ∈ R} then
9: k ← j + 1

10: break
11: end if
12: r ← γ(R)
13: r′ ← max{r, r′}
14: if r > 1 and r ≥ r′

then
15: P = P

⋃
{R}

16: end if
17: end if
18: end for
19: end for

of r thus that the first element in P has the highest r. In order to get rid
of the clusters that are not minimal in the sense of the original definition, the
Algorithm 2 is used. In this algorithm on line 4: if i is a subset of j, then j is
not minimal and is therefore removed from P . If j is a subset of i then j is also
removed, since i has a higher r.

Algorithm 2 Cleanup step of the initial algorithm

1: sort P by r
2: for i ∈ P do
3: for j ← i+ 1 ∈ P do
4: if i ⊂ j

∨
j ⊂ i then

5: P ← P \ j
6: end if
7: end for
8: end for

Many of the clusters in P might conflict with each other. There are several
possibilities on how to handle these, off which the simplest is to merge over-
lapping clusters. The approach here is to merge overlapping clusters in P , if
the intersection is greater than by two base-stations (elements). By doing so
smaller clusters are achieved which should provide better results. On the other
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hand, due to the remaining overlaps, it is not possible to define an unambiguous
mapping from the base-station information to the place information. This does
not constitute much of a problem in the further analysis.

The final step in getting the possible places at a given time t1 is as follows.
Assume that at time t1 the mobile phone is connected to cell c. The set of
possible places is the set of clusters in P the cell c belongs to. If c does however
not belong to any cluster then the place is c itself. If there is no cluster then c
has no neighboring cells between which significant oscillations would occur i.e.
the connection between the mobile and c is assumed to be stable. This could for
example be the case in an open countryside where there is only one base-station
in reach.

The place detection in [3] continues by extracting from the set of places the
meaningful ones — the bases. This step is here however omitted in favor of a
fixed timeslot definition which will be discussed later on.

1.2.2 Second approach

The second approach (Fig. 2) uses the location data which has first been pre-
handled in order to maximize the accuracy after we clean the data set. If
we want to know the position of a user at time t, the position of four base-
station timestamps around t are needed B(t1), B(t2), B(t3) and B(t4), and
t1 < t2 < t < t3 < t4.

a(t) =
1

4

{
B(t2) + (B(t3)−B(t2)) t−t2

t3−t2

+ B(t1) + (B(t4)−B(t1)) t−t1
t4−t1

+ B(t2) + (B(t4)−B(t2)) t−t2
t4−t2

+ B(t1) + (B(t3)−B(t1)) t−t1
t3−t1

}
. (1)

We divide the globe (or the part of the globe a user has visited) into a
square grid with 0.002 in latitude and 0.002 in longitude. So the size of each
grid depends on its latitude. We locate user’s location every 15 mins. Therefore
the accuracy of the linger time for all cells is also 15 mins. The meaningful place
in this definition should be a continuous area on the map where the linger time
of its cells are similar. We use three steps to recognize these meaningful places
in this method,

(1) We need to move some unimportant places where user visits casually. If
the linger time of a cell is less than 45 minutes, one can believe the linger time
of this cell is 0. We use a very small threshold 45 mins, considering that for
some places, like the gym, the user will not visit a lot but they are important
meaningful place.

After we use a very small threshold in step (1), we find some meaningful
places like ”office” and ”home” are always connected by the road. We must
recognize the ”office” and ”home” respectively. Fortunately, we find the linger
time of ”office” and ”home” are different a lot with ”road”. Then we can repeat
the following steps to define meaningful places.

(2) Find the largest linger time cell as the center cell in all cells which do
not belong to any meaningful place.

(3) Define a continuous area around the center cell as a meaningful place
where the linger time in these cells is longer than the 1% of the center cell.
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Supplementary Figure 2: Some important places of user 1, detected by grid
approach. Drawing pin presents the center of the grid. Each meaningful place
is a continuous region where the drawing pins have the same color.
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Supplementary Figure 3: Schematic presentation of the process from raw
base station data to dayvectors for place definition one and two.

For each user, we repeat step (2) and (3) 50 times or until we can not
define more places. In other words, each user has 50 meaningful places in the
most. The benefit of the location grid based approach is that it can be directly
extended to any kind of localization technology (gps ...).

1.2.3 Creating dayvectors

Independent of which place detection algorithms were used, one can now create
for each user and each day a vector which contains the visited locations. This
is just what Eagle and Pentland [7] have done in the special case of a “three-
state” system (work/school, home, elsewhere). The wanted time resolution is
determined by the used time window. With a time resolution of 12 hours each
vector would have two entries. The process from raw base station data to
dayvectors for both place definitions is visualized in Fig. 3

We define the location of one timeslot to be the one where the most time has
been spent during that timeslot. Another option would be to use the location
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(a) raw (b) padded

Supplementary Figure 4: A few dayvectors of a user at a time window of
1 hour (a) before (b) after handling missing data. Each row represents the
locations of one day. Each color is a different location. Slots with no data are
black.

Table 1: Set of rules by which the missing data is padded.

Name Criteria Example Max duration
Gap1 Begin = End place AXXXXA 8 h
Gap2 Begin 6= End place AXXXXB 4 h

with the longest continuous stay time in the timeslot. However, it is likely that
the differences of these two definitions are rather small. A benefit of using time
slots is that one can handle overlapping locations without problems.

There are several reasons which can result in missing data. The largest gaps
that occurred in the dataset, which are of the order of several days, are most
likely due to the fact that a user has temporary removed the reality mining
application from his/her phone (type A). Another source is due to the earlier
versions of the reality mining application itself, which sent location data only
when a cell transition has occurred (type B). There might be long time periods
without cell transitions ergo missing location data. Most of the missing data
during a single day is thought to be of the this second type. The third reason
for gaps is that a phone is not connected to any base-station (type C ). This is
the case when the phone is either switched off (by purpose or accidentally e.g.
due to an empty battery) or the phone is out of the reach of the mobile phone
network. Missing data does cause problems in the following data analysis and
thus it is tried to pad with reasonable estimates for the location where ever
possible.

In the current approach the missing data is handled as follows: If the most
dominant place in the timeslot before and after the gap is the same and the gap
length is less than 8 hours, then the gap is filled up with the place at its edges.
If the place before and after the gap are not the same, then the gap will be filled
up with the place before the gap, if the gap-length is less than 4 hours. This
set of rules is shown in a more comprehensive way in Table 1. The procedure
results in accurate place data, if the missing gaps are of type B. If the gaps are
due to some other reason (type A or C ), then there is no guarantee that the
result is correct. It might be even conceivable that a user switches off his/her
phone with the particular purpose of hiding his/her place.

Since the operation is done on the coarse-grained data, the procedure is in-
dependent from the used place detection algorithm and the format of place data,
but on the other hand different gaps might be filled up if the time-resolution is
changed (8h versus 4h fill-up if start and end place are the same). The effect of
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Table 2: Criteria for including a day and a user into the analysis.

Name Criteria
Accept day < 30% empty timeslots
Accept user > 30 days accepted
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Supplementary Figure 5: Available days for all participants of the user panel
prior to any data handling.

the missing data handling is demonstrated in Fig. 4b.
Not all gaps are filled by the method as described above. The parts of the

dataset that were not complete enough were rejected. In particular, days with
more than 30% of empty time slots after the fill-up procedure were not accepted.
In addition to this, a user was excluded from the further analysis if there were
less than 30 days of accepted days (see Table 2).

1.3 Data properties

1.3.1 Available location data

Only around one out of ten users (depending on the used place definition) had
usable location data for more than 30 days. The raw days for all users are shown
in Fig. 5.

The accepted days for the first place definition are shown in Fig. 6 a) and for
the second place definition in Fig. 6 b). The accepted days for the two methods
are compared in Fig. 7 — the two methods give slightly different results. With
the second method a few more days are accepted on average. However in both
cases around 60 users had over 30 days with enough location data.

What do the typical dayvectors contain on average? The distribution of the
locations in the timeslots are shown in Fig. 1 of the main article for the first
place definition and in Fig. 8 for the second.

As can be observed from Fig. 1 of the main article, the total number of
places with the first place definition might be rather large. Many places might
occur in only one or just a few time slots. What is the actual number of crucial
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Supplementary Figure 6: Accepted days a) def1 and b) def2 for all users.
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Supplementary Figure 7: A scatter plot of the accepted days for def1 versus
accepted days for def2. Each point is the data for one user. The red lines mark
the acceptance criterion for users in the analysis (30 days for def1, 100 days for
def2).
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Supplementary Figure 8: Distribution of significant locations for the ac-
cepted users with place definition two. The results were obtained with a timeslot
of one hour.

places that have to be tracked for a given user in order to be able to get the
correct live patterns? Starting with a users coarse-grained place data for a given
time window (say e.g. 1 h) the places are sorted by the number of times they
occur in the dayvectors. The place li is the one that is the ith frequent place,
further let the ni be the number of times place li occurs in the dayvectors.
Relevant places are further defined as the ones with ni > 0.01 n1 ( n1 is likely
to be home). The other places are merged into a single place else. Keeping
more places did not really improve the results, as test runs have shown. One
should notice that the used definition does also depend on the used timeslot
— with a shorter timeslot the number of relevant1 places is probably larger.
No significant relation between the number of available days and the number of
locations found is evident for the first place definition (see Fig. 9).

The distribution of the number of important locations is shown in Fig. 10.
An analysis of the functional form of the cumulative distribution reveals that it
does not adhere to a simple form, say a power-law times an exponential cut-off
(“x−a × exp−x/b”). On the other hand the distribution is clearly not peaked
and rather wide. We return to the significance of the empirical features when
discussing entropy.

For the second place definition, we delete some cells with the linger time
smaller than 45 mins. Then we also limit the max number of places for each
user. From Fig. 8, we can see all users are far from close to this limit. In
other words, we collect all meaningful places we can recognize in the second
place definition. However, in some cases, we know where the user is but we
cannot define the user’s meaningful place. This is since the user is on the road
to somewhere or at some unimportant place. Therefore, we define that a place
means ”others” to describe this situation.

To summarize with definitions 1 and 2 slightly different placevectors are
achieved. Definition 2 uses the location data directly and is thus probably more
accurate.

The fraction of actual locations fi is shown in Fig.11 in the case of 30 minute
slots. The fraction is studied as a function of the time of day. fi is the average
of relative fractions over the dataset (ie. the ratio of locations found at time-slot
i for user u over su, the number of significant locations for user u). The number
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Supplementary Figure 9: Days found versus locations found with the first
place definition (upper) and second definition (lower panel).
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Supplementary Figure 10: Distribution of important locations found with
place definition one.

of visited locations should be a function of the time of the day; It is intuitively
clear that, generally speaking, people tend to stay mostly at home during the
night and most of the activities requiring a switch in location occur during day
time. This trend can be observed in the Figure.

Supplementary Figure 11: Number of visited locations at different time-slots.

1.3.2 Gaps in the location data

As it became evident from the day vector representation, there are quite many
gaps in the location data that have to be handled with. One can develop a set
of criteria like: if the gap is smaller than some threshold and the location before
and after the gap are the same, then the location has been the same during the
whole gap — as it is done in Sec. 1.2.3. The gaps in the data before and at
different stages of the gap filling procedure for the first place definition (Sec.
1.2.1) is shown in Fig. 12.

A totally different approach is to take a look at the gaps and their distri-
bution itself and try to find out whether or not any interesting patterns can be
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Supplementary Figure 12: Large figure: Gap length distribution, Inset:
Probability of missing data as a function of time of day. Averages over all
accepted users. The resolution is 0.5 h.

found. There is a lot of uncertainty in the following results since the origin and
accuracy of the gap and their lengths respectively can not be addressed directly.

The average gap lengths for the accepted users are plotted in Fig. 13, upper
panel. No correlation was found between the number of days and average gap
length (not shown), but one could try to search for correlation with other aspects
of the available data. It is also interesting to note when there is missing data.
The probability of missing data is shown in Fig. 13 averaged over all users. First
of all the most gaps are found during night time (people turn their phones off
during the night ...) and the phones are most likely turned on in the afternoon.
However, there are some differences in the gap data between the users. For one
user one finds for example two local minima (blue line in Fig. 13) in the gap
data at around 10am and 3pm. A possible explanation could for example be
group meetings during the work day, where one might turns off the phone.

Further insight can be gained by investigating the distribution of the gap
lengths. This can be in a rough sense understood as a distribution of waiting
times. It is however not possible to give a single meaning to these waiting times,
since these might refer to various topics like: The time after which an empty
phone is charged (if the battery was low) The time before the phone is needed
again (if it was switched off) The length of an event during which the phone
has to be turned off.

The distributions of gap lengths are shown in Fig. 14. What can be noticed
from these is that very long gaps (off the order of days) are rare and for gap
lengths below 24 h the distributions could be fitted with a power law. However
there is not that much available data for a single user and thus the focus is
turned to the joint distribution (Fig. 14, lower panel). It is however difficult to
figure out how this exponent ν could characterize a user in a concrete way.
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Supplementary Figure 13: Upper panel: average gap length for each user
(the error bars denote the standard deviation). Lower panel: Gap data at 10
minutes time intervals. Y-axis is the probability that there is location data (no
gap) for that time slot. Green line: mean over all users average gap data (the
error bars denote the standard deviation). Blue line: average gap data of a
single user.
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Table 3: The Q and cluster number with different time windows for the second
user (The second definition of place).

time window Q cluster number
0.5 hour 0.219253 58
1 hour 0.267696 34

1.5 hour 0.328684 17
2 hours 0.351665 3
3 hours 0.446333 6
4 hours 0.43417 3

2 Supplementary discussion

2.1 Clustering results

The clustering result is affected by the technique applied. Currently we use
two different methods.y The first option is to use kmeans clustering. We use
hamming distance to measure the difference between two day vectors,

dH(D1, D2) =
1

n

n∑
j=1

(1− δ(l1,j , l2,j)), (2)

where δ(x, y) is the Kronecker delta.
The second method is to create a weighted network for each user. The

vertices in the network are the accepted days for that user. The edges are
calculated by a weighting function based on the hamming distance,

wij = exp(−dH(i, j) β), (3)

where β is an adjustable parameter — influencing the slope of the function.
Days that share the same dayvector have a weight of one and days that have
very different dayvector respectively a weight close to zero.

The reason to create a weighted network is that one can then apply com-
munity detection methods on the network. A remarkable feature of this is that
the number of the clusters is in itself an outcome of the algorithm and does not
have to be adjusted a priori.

In particular, we use the algorithm proposed by Duch and Arenas [9], which
is based on an extremal optimization of the value of modularity and is feasible for
the accurate identification of community structure in large complex networks.

In this algorithm, both the length of time window and the weight parameter
β affect the cluster result. One can actually search for the best time window
and β of observation for a particular user by optimizing the resulting community
structure. In the simplest case one just calculates the modularity with different
time windows and hopes for a nice behavior with a clear global maximum. One
can then test how much the optimal time window varies between the users. The
obtained results are of course also dependent on how accurate the actual place
definition is. Tab. 3 presents Q and the number of clusters on different time
window.

Irrespective of the used method for clustering, a set of clustered days is
achieved for a user. Next one should try to gain as much information as possible
from these. When the previous steps have all been successful, which is what
is assumed here, a cluster can be interpreted as representing an average day
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of a user including fluctuations around it. The number of clusters can thus be
directly seen as the number of average days a user has (or more precisely: had
during the time of observation) — if it is an outcome of the clustering procedure.
Other observables of interest are of course the size of the cluster and whether
or not there is any pattern for the days belonging into a specific cluster (e.g. is
there a “weekend cluster”).

The average day of a cluster can easily be defined as

Davrg,c = {imax,1c, imax,2c, ...., imax,nc}, (4)

where imax,jc is such that

limax,jcjc = max
i

(lijc) (5)

and lijc is the number of times place i is the most dominant place at timeslot j
in cluster c. Further we allow missing data in the average day only if it is the
only place for a given timeslot in the cluster.

A general result is that while many clusters are of reasonable size and can
be categorized quite effectively, there are also clusters where this is not the case.
This is most notably true for the smaller clusters that do not necessary represent
any typical pattern of a users life but are often due to an unique event — for
example a trip. Among the dataset were also users who spent most of there
time in one place only, probably their home and work place were so close, that
these were not detected as separated places by the method used. For these users
the clustering method does not provide much of useful information.

2.1.1 Entropy after clustering

Besides identifying the behavior a cluster is representative for, it is also relevant
to know how much fluctuations there is inside a cluster. In other words one
wants to know how regular the days are within a single cluster for one user.
One also wants to know how much information is gained by clustering the days
and how much uncertainty is still left. Next we restate the definitions of entropy
for completeness.

The method of choice in this work is to use an entropy based analysis. One
can calculate an entropy for the unclustered time-slot representation for each
user by

ε = −
∑N

j=1

∑
i∈I lij/Dtot log(lij/Dtot)

N
, (6)

where N is the number of time slots in one day (columns), Dtot is the total
number of days (rows), I is the set of all places the user has visited and lij is
the number of times place i is the most dominant place at timeslot j. Since
missing data is no real place, it is here not included in I. A low entropy means
that the days of a user are regular and vice versa. The number of accepted
locations does affect the unclustered entropy — this is shown in Fig. 15.

In a similar manner one can calculate the entropy for a cluster of days as

εc = −
∑N

j=1

∑
i∈I lijc/Dc log(lijc/Dc)

N
(7)

where Dc is the number of days that belong to cluster c and lijc is the number
of times place i is the most dominant place at timeslot j in cluster c.
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Supplementary Figure 15: Unclustered entropy as a function of locations (ac-
cepted) with place definition def1. Also shown in the figure is the unclustered
entropy that would be obtained if the locations would by evenly distributed and
for power-law distributions with different exponents. No power-law distribu-
tion does fit the data really well, particularly the exponent for the histogram
of the significant locations (e.g. Fig. 1 of the manuscript) overestimates the
unclustered entropy for most users.

The entropy related to the clustered days should be smaller than for the
unclustered case. The clustered entropy is here defined as the weighted average
of the single cluster entropies:

ε̄c = −
∑

c∈C
∑N

j=1

∑
i∈I lijc log(pijc)

DtotN
(8)

where pijc = lijc /Dc and C is the set of clusters. The drop in entropy due to
the clustering can further be defined as

∆ε[%] = 100 (1− ε̄c
ε

). (9)

When comparing two clusterings for the same dayvectors, the better one will
result in a higher ∆ε[%].

The percentual entropy drop for different clustering methods are shown in
Fig. 16 for place definition one and in Fig. 17 for place definition two. From
these figures one can observe that EO performs on average better the higher
the unclustered entropy — this is most likely due to the fact that the number
of clusters is larger than the prefixed value for kmeans. One should notice here
that the clustered entropy does not employ any kind of cost for the number of
clusters. Thus a situation where each day forms its own cluster would result in
a clustered entropy of zero. Strictly speaking the clustered entropy can not be
compared independently but should be put into prospective with the amount of
clusters. The entropy drop as a function of clusters found is shown in Fig. 18
for place definition one and in Fig. 19 (A) for place definition two respectively.

In Fig. 15 it was clearly seen that the number of locations does influence
the unclustered entropy. It is however not directly clear if it does also so for the
entropy drop. From Fig. 20 and Fig. 21 , where the two quantities are compared
for place definition one and two respectively, no clear correlation between the
number of locations and the entropy drop was found except for a small decrease
in the entropy drop with more locations. Intuitively one might argue that on
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Supplementary Figure 16: Percentual drop in entropy as a function of un-
clustered entropy for different clustering methods
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Supplementary Figure 17: Percentual entropy drop due to clustering

average for a user with more important locations there are on average also more
typical days ergo clusters. A slight trend of this kind is indeed seen in Fig. 22 for
the first place definition - here a logarithmic fit seems to work well. However in
Fig. 23 with the second place definition no dependency of this kind is detectable
unambiguously. Thus one might argue that the observed log scaling is mostly
an artifact due to the rule to set the number of locations or that for the second
place definition the number of locations is too small, or otherwise truncated
in order to obtain a clear dependency. In any case the observed scaling is not
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Supplementary Figure 18: Entropy drop (place definition one) as a function
of clusters found.
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Supplementary Figure 19: (place definition two) A) Percentual entropy drop
due to clustering as a function of the number of clusters. B) Entropy as a
function of the number of clusters.

linear. Another attempt would be to try to relate the entropies to the user-
to-user variation resulting from the number of significant locations per user.
To this end, we show in Figure 24 the cumulative distributions of entropy for
tw cases: clustered, bare, and the distribution of the logarithm of the mixing
entropy (N − 1, where N is the number of locations per user). The data has
been rescaled with the median of the quantity in each case. As noted in the
main text the two entropy distributions are quite close; the location data differs
in the tails. This happens in an intuitively transparent manner: the distribution
is more narrow than for the entropy.

It is clear that most humans have life patterns that repeat from day to day.
Thus it is also of interest to take a look at the entropy of a user at the scale
of the single time slots. The entropy for a single timeslot is in analogy to the
previous definitions obtained by

ε(j) = −
∑
i∈I

lij/Dtot log(lij/Dtot) (10)

where j is the timeslot, Dtot is the total number of days (rows) in the cluster,
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Supplementary Figure 20: (place definition one) Percentual drop in entropy
as a function of accepted locations for different clustering methods.
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Supplementary Figure 21: (place definition two) Unclustered entropy with
the number of locations.
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Supplementary Figure 22: (place definition one) Number of clusters found
with the number of locations.

I is the set of all places the user has visited in this cluster and lij is the number
of times place i is the most dominant place at timeslot j. A higher entropy
at a certain timeslot indicates that the user is more likely to deviate from the
average behavior at that time. A entropy of zero is obtained only if the user is
always at the average place for that timeslot and cluster. A few examples are
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Supplementary Figure 23: (place definition two) Number of clusters found
with the number of locations.

Supplementary Figure 24: Entropy and locations (per user) cumulative dis-
tributions scaled with the median values.

shown in Fig. 25.
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Supplementary Figure 25: (place definition two) Average entropies with time
of day under different cluster algorithm.

The final issue that we must answer is: given the power-law distribution
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of the time spent at various locations (Fig. 10), how is it actually feasible to
have a relatively limited number of patterns for all users and how does that
relate to the entropy? A location can be found in the data at a slot with four
different roles: i) it is the right one in the pattern, ii) it is in the pattern but
at another slot(s), iii), it is in another pattern and iv) it is not actually part
of any pattern. The case ii) relates to eg. occurrences when the working day
length at hand varies from the one predicted by the pattern (see below for this
issue). We distinguish between cases iii) and iv) and plot in Figure 26 the
fraction of the occurrences of a location such that it is “out of patterns”. This
is true noise - measured partly by the entropy - coming from the presence of
rare activities/locations in the data. What is quite intriguing is that below a
typical frequency, the probability for a location to be “pure noise” as measured
by in case iv) increases as a power-law. The reason for this functional relation is
as unclear as that of the power-law for the location frequencies, but the message
is simple and not unexpected: rare activities are not found in typical patterns.
Note also the implication this might have for the relation between entropy and
the number of important locations for each person.

Supplementary Figure 26: Fraction of “clustered” locations according to
their prevalence in the location data.

2.2 Predictability

Our discussion is based on the concept of a “meaningful location”. This is a
coarse-grained description that avoids following accurately the real-time geo-
graphic position. As the radius of such locations is smaller than 1 km, any
predictions of users’ behavior on this level could also be used in many applica-
tions, like traffic prediction. We note that further improvements can be done
in the prediction accuracy by changing or augmenting the location data (Blue-
tooth, WLAN, GPS...). The mobile phone base station methods have intrinsic
limitations due to the varying density of stations, and due to the technology
limitations discussed in data analysis part.

Just like weather forecasting gives us a probability of precipitation, we also
define the probability of user’s (next) slot location as the prediction. When we
try to form such a guess, usually we cannot say with certainty that the user
will goto place A at next change of slot (eg. by the hour), but a probabilis-
tic description like user will go to A1 with probability a1%, and to A2 with
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probability a2%... Thus for user i, in time window t, we define the quality of
prediction as,

Πi,t = ΠA(i,t), (11)

where the A(i, t) is the event that the user i at some place at time t and the
ΠA(i,t) is the prediction probability we give for this event. Therefore, the overall
prediction quality of user i can be figured out by computing the average of Πi,t

with t, and the overall prediction quality of time window t can be given by the
average with i.

As we discussed above the cluster structure decreases the entropy, and it
also helps us to improve the accuracy of prediction. Over what we can predict
without the knowledge of actual cluster. In the following, we will discuss the
prediction accuracy in both cases. As in the case of entropy, we also apply
two methods to predict users’ behavior. The simplest one is to predict the slot
locations by expected main one. The other one uses the empirical knowledge of
the transition matrix from location A1(i, t) to A2(i, t + 1). As is obvious, the
latter method uses more detailed information and can thus be expected to give
more reliable results.

2.2.1 Method 1: The expectation of daily life.

The first prediction method comes from the measurement of the “center of
gravity” of the user’s daily life in each time slot as we measure the probability
of a user at all possible places at a certain time window from the data set. Then
we use this probability as the actual prediction; the resulting inaccuracy or error
is obviously related to the entropy in general and the entropy for the given time
of the day per user, in particular. When we consider the cluster, we define the
piatc as the probability of a user i at place a at time window t in cluster c.
Therefore, the quality of prediction Πi,t can be written as

Πi,t =
∑
a

p2iatc, (12)

where the average is over all clusters. In the absence of cluster, we just need
to use piat instead of piatc.

The prediction accuracy at different time windows is shown in Fig. 27, upper
panel. We can see that the prediction quality improves clearly with clustering.
The average prediction accuracy is 0.528 (with clustering) and 0.361 (without
clustering). Note the strong effect of the clustering method on the prediction.
It is also interesting to note the daily variation in the prediction quality, which
shows similar features for all the three cases depicted.

2.2.2 Method 2: Transition matrix

The transition matrix Tt,t′ contains the probabilities of where the user is at time
t′ when the user at some place at time t and with t′ = t+ ∆t. If the user stays
at A1 at time slot t, the probability of user moving to A2 is Tt,t+1(A2|A1). So
the A1th row of the resulting matrix is the resulting prediction. The prediction
accuracy at time slot t is,

Πt =
∑

A(t),A(t′)

Tt,t′(A(t)|A(t′))2, (13)
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Supplementary Figure 27: Upper panel: (Place definition two) The average
prediction quality of all available users by the first method in the cases of using
clusters and without. The clustering is from the EO algorithm with β=7.0 and
β=10.0. Lower panel: the same for the second place definition method.

where A(t), A(t′) are the user’s locations at time slots t and t′.
Figure 27, lower panel presents the prediction accuracy with the time lag

∆t = 1. Because we use the user’s location in the past in this prediction method,
we can see that the prediction accuracy is much higher than the first one and
the clustering cannot help to improve the accuracy a lot. The average prediction
accuracy is 0.7412 (without clustering) and 0.7796 (with clustering). The impli-
cation is to repeat that the matrix T contains indirectly the information revealed
through the clustering: certain elements are non-zero since they correspond to
location changes in a day whose structure is described by one of clusters, and
the remaining ones are so, since the clustering is nevertheless noisy.

We can see in both cases/methods, that the prediction quality is better at
night than day. The obvious significance is that is because the user will sleep
at home at night and they will visit a lot of places during the daytime. The
prediction quality has two minima around 9:00 and 17:00 when users go to work
and go back home on the workday. In the workday morning, the users will go to
nowhere but their offices, but when they leave the office, they have more choices
like home, shopping, gym, bar, and so on. Therefore the latter minimum around
17:00 is the worst prediction time window.

The predictions can be extended also to ∆t > 1. The user location pre-
dictions over a longer range or the prediction accuracy with different δt and
different clustering parameters are depicted in Fig. 28. Two observations stand
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Supplementary Figure 28: Place definition two) The average prediction qual-
ity of all available users by the second method for ∆t > 1 with different clus-
tering parameters β.

Supplementary Figure 29: (Place definition two) The users’ raw entropy
against the prediction accuracy from both the methods and with and without
clustering. The clustering is from the EO algorithm with β=7.0.

out. First of all, the long-range prediction with the transition matrix technique
decays fairly slowly - recall the time slot length here is 1 hour so the range of
time delays in the figure extends to 12 hours. Even at such times the achieve-
able prediction accuracy remains comparable to that of the first method. This
is of course natural in that the null case is “I go at N slots from now to the
most likely slot at time N+1”. Second, for larger delays ∆t > 1 the clustering
improves the accuracy, and the longest delays/lags still give a slightly better
result than the first method with clustering.

We know a small entropy indicates a regular life which should be easier to
predict. Therefore, we would like to see if we can predict a user’s behavior
better when he/she has a smaller entropy. Figure 29 presents the prediction
accuracy with the entropy of 66 users. It is interesting to compare the user-
to-user variability given the original entropy and the influence of the particular
prediction methods and clustering. The figure is another variant of Figure 4c
of the main manuscript.

Figure 30 discusses the matter further by turning to the cumulative his-
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Supplementary Figure 30: (Place definition two) The cumulative distribu-
tions of the prediction levels for the four different cases (two methods, with or
without patterns) as above.

tograms of the methods. In all four prediction cases there are indications that
a small fraction, less than 10 % of the user population studied here, are difficult
to predict. The second, transfer matrix method, shows a clear but quantita-
tively smaller improvement 0.0384 by the use of patterns, whereas in the first
method there is a typical improvement of about 0.167 in the prediction effi-
ciency. The maximum predictabilities indicated by the histograms vary from
about 2/3 (location, or first method) to about 0.82 (adding patterns) to 0.91
- 0.92 (second method). It is relatively obvious that for very regular persons
the transfer matrix idea works equally well with and without the utilization of
underlyign patterns of life.

2.3 Voice call and Message data: Work-Home cycle

In addition to predictability based on location data, we also tried to gain further
insight by considering the individual communication patterns. Since the data
allows to identify individual events (time of communication), type (call, text
message, out/inbound), and “persons” (distinct communication partners), it
seems an appealing idea that correlations might exist between deviations from
the typical pattern and such events. In short, the idea was to predict the
departure from work to the next “location”.

Three different approaches were tried. We explored the possibility of fluctu-
ations in communication densities (“more calls and/or messages in the last three
hours before leaving. In particular, the possibility of ”bursts” in the activity
were looked-for, in cases when the average working-day length was shorter than
the average for the current user. The data indicated no statistically significant
signatures of such, however. The second approach was to look for a ”typical”
event in terms of the more frequent numbers found from the total communica-
tion statistics. This also did not lead to any measurable correlations: the idea
would have been that there are regular deviations arising from daily-life needs
that compete with the work requirements. Thus the right type of a call or a
message would induce a change in the planned daily activities and a departure
from work. Finally, we also considered the ”anti-correlations” or the effect of
communications with rarely found numbers in the data. Here the idea would
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have been that in the minority of cases, the working day becomes shorter than
usual since something unusual happens. This would have then been correlated
with the presence of a communication with a ”strange phone number”. Also
this try lead to no significant results. It is worth noting that the typical commu-
nication density from the data during say the last two hours prior to departure
from work is 0-2 calls and messages per half an hour time slot, so in a way it
is not surprising that for a typical user it is difficult to establish even a weak
correlation of any particular kind, since the smallest possible fluctuation is one
call/sms per time slot.

The lack of evident correlations then leads to the question, if the duration
data of the working day has some particular characteristics and why. We found
that of the total users contained in the statistics (58 users) 30 or 52 per cent,
a slight majority, seemed to have enough similarity to assume that they each
follow a similar probability distribution function for the working day length,
albeit with different, ”personal” parameters for each. Of the remaining users at
least some are described by a non-sufficient quantify of data. Figure 31 shows
the individual parameters for the empirical probability distributions for each
user, for both those users chosen for the modeling attempt described below and
for the others. We notice that the work-day length is smaller for the second set,
but it is crucial to note that this claim is based on the significant location, ie.
the idea that the work-day is based on one single (though possibly ”diffuse” or
locally spread) geographic location. The standard deviations are comparable,
while the skewnesses are clearly different and have even different signs. Also,
the average number of days in the statistics is about three times smaller for the
”deviant” cases.

To analyze the data and develop a toy model, we formed an aggregate distri-
bution by rescaling and summing. Thus, all individual probability distributions
were scaled to a zero mean and a variance of unity, and then summed together.
Figure 32 shows the resulting data; it is obvious that the tail versus smaller-
than-average working day lengths is broader.

The red curve shows one fit of the following simple model (the fit can be done
in various ad hoc ways depending on whether one ignores the central peak or
not). Consider that the working day length is completely deterministic in that
a person expects to work X hours and Z minutes a day. Valid examples would
be the case in which bus timetables or employer-stipulated expectations set the
norm. Deviations occur due to leaving earlier, or since the current-day’s tasks
need to be finished before leaving. The model that we use to fit the data is based
on two processes: if I need to leave from work for any pertinent reason before
my usual (and known) average, the chance for this increases by every moment
that passes. Likewise, the same idea but with a different parameter applies
to staying at work longer: the likelihood of staying for the next ∆t decreases
by a constant amount at each ”step” or time I decide. There are thus two
exponential tails, which follow from two different biases (to stay or to go) and
the deterministic expectation of a typical working day. The exponential scale
parameters are t1 = 80.8917(minutes) and t2 = 40.9643(minutes), respectively,
for the two tails.
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Supplementary Figure 31: Key statistics of regular (left) and irregular users
(right) as a function of user id.

Supplementary Figure 32: Length-of-working-day distribution and the
model fit for regular users.
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