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Full recursions for Zi,j(x) for the Turner energy model

In the main paper, the recursions given in Theorem 1 and related material in the section Methods are
for the simple Nussinov energy model for RNA secondary structure, in which base pairs are assigned a
stabilizing energy of −1. This was done to simplify the argument on first reading. Nevertheless, it is known
that the Turner energy function, which considers stabilizing energy contributions due to base stacking and
destabilizing energy contributions due to loop entropy, is much more accurate for structure prediction. For
that reason, our software, FFTbor, is implemented for the Turner energy model, following the following
recursions.

To compute Z(x) = Z1,n(x), we use the recursions

Zi,j(x) = Zi,j−1(x) · xd0 +
∑

sk sj∈B,
i≤k<j

(
Zi,k−1(x) · ZBk,j(x) · e−Ed/RT · xd1

)
, (1)

where d0 = 1 if j is base paired in S[i,j] and 0 otherwise, where d1 = dBP (S[i,j], S[i,k−1]∪S[k,j]), and where Ed

is the energy contribution due to dangling ends (energy contributions from single bases stacking on adjacent
base pairs) and closing AU base pairs (since a non GC base pair closing a stem has a destabilizing effect).
The sum is taken over all possible base pairs (k, j) with i ≤ k < j.

We compute ZB(x) using the recursion

ZBi,j(x) = e−EH(i,j)/RT · xd2

+
∑

sksl∈B,
i<k<l<j

ZBk,l(x) · e−EI(i,j,k,l)/RT · xd3 (2)

+
∑

sksl∈B,
i<k<l<j

(
ZMi+1,k−1(x) · ZBk,l(x) · e−(a+b+c(j−l−1))/RT · xd4

)
,

where d2 = dBP (S[i,j], {(i, j)}), where EH(i, j) is the energy of the hairpin loop with closing base pair (i, j),
EI(i, j, k, l) is the energy of the stack, bulge or interior loop with the closing base pair (i, j) and the interior
base pair (k, l), d3 = dBP (S[i,j], S[k,l] ∪ {(i, j)}), and d4 = dBP (S[i,j], S[i+1,k−1] ∪ S[k,l] ∪ {(i, j)}). The first
term in the recursion takes care of the case where (i, j) is the only base pair in [i, j], i.e. (i, j) closes a hairpin
loop. The second term handles the case where there is an interior loop (or a bulge or a stack) closed by
(i, j) and (k, l). The third term takes care of all the structures where (i, j) closes a multi-loop. To reduce
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complexity of the algorithm, the interior and bulge loop size can be limited to a maximum size of L, by
requiring that l > j − L in the above recursion.

The final recursion, for computing ZM(x), is

ZMi,j(x) = ZMi,j−1(x) · e−c/RT · xd0

+
∑

sksj∈B,
i≤k<j

(
ZBk,j(x) · e−(b+c(k−i))/RT · xd5 (3)

+ ZMi,k−1(x) · ZBk,j(x) · e−b/RT · xd6

)
,

where d5 = dBP (S[i,j], S[k,j]) and d6 = dBP (S[i,j], S[i,k−1] ∪ S[k,j]). Note that since ZMi,j(x) computes the
partition function contribution under the assumption that [i, j] is part of a multi-loop, there will be exactly
one stem-loop structure in this region (the ZB(x) term) or more than one (the ZB(x) − ZM(x) term).
Justification of recursions (1), (2), and (3) follow by induction, as in the proof of Theorem 1.

Scaling

Since the use of scaling may not be well-known in the context for RNA secondary structure, we describe how
the recursions of FFTbor can be scaled to any given constant. Let c > 1 be a real scaling constant. Given

an RNA sequence a = a1, . . . , an and initial structure S0 of a, let Qk
1,n = Zk

1,n

cn denote the scaled sum of
Boltzmann factors of all secondary structures S, whose base pair distance from S0 is exactly k. Noting that
the maximum base pair distance between any two structures of a is at most n, we define the polynomial

Q(x) =
n∑

k=0

ckxk (4)

whose coefficients ck = Qk
1,n. If we evaluate the polynomial Q(x) for n + 1 distinct values

Q(x1) = y1, . . . , Q(xn+1) = yn+1

then the Lagrange interpolation formula guarantees that Q(x) =
∑n

k=1 yi · Pk(x), where

Pk(x) =

∏
i 6=k(x− xi)∏

i 6=k(xk − xi)
.

Let Q(x) denote Q1,n(x), defined by induction on j − i as follows. For 1 ≤ i ≤ j ≤ i + θ, define
Qi,j = 1

cj−i , while for i + θ + 1 ≤ j ≤ n,

Qi,j(x) =
1
c
·Qi,j−1(x) · xd0 +

∑
sk sj∈B,
i≤k<j

(1
c
·Qi,k−1(x) ·QBk,j(x) · e−Ed/RT · xd1

)
, (5)

where d0 = 1 if j is base paired in S[i,j] and 0 otherwise, where d1 = dBP (S[i,j],S[i,k−1]∪S[k,j]), and where Ed

is the energy contribution due to dangling ends (energy contributions from single bases stacking on adjacent
base pairs) and closing AU base pairs (since a non GC base pair closing a stem has a destabilizing effect).
The sum is taken over all possible base pairs (k, j) with i ≤ k < j.

Let QB(x) denote QB1,n(x), defined by induction on j − i. For 1 ≤ i ≤ j ≤ i + θ, define QBi,j(x) = 0,
while for i + θ + 1 ≤ j ≤ n,

QBi,j(x) =
1

cj−i
· e−EH(i,j)/RT · xd2

+
∑

sks`∈B,
i<k<`<j

1
c(j−`)+(k−i)

QBk,`(x) · e−EI(i,j,k,`)/RT · xd3 (6)

+
∑

sks`∈B,
i<k<`<j

( 1
cj−`+2

·QMi+1,k−1(x) ·QBk,`(x) · e−(a+b+c(j−`−1))/RT · xd4

)
,
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where d2 = dBP (S[i,j], {(i, j)}), where EH(i, j) is the energy of the hairpin loop with closing base pair (i, j),
EI(i, j, k, `) is the energy of the stack, bulge or interior loop with the closing base pair (i, j) and the interior
base pair (k, `), d3 = dBP (S[i,j],S[k,`] ∪ {(i, j)}), and d4 = dBP (S[i,j],S[i+1,k−1] ∪ S[k,`] ∪ {(i, j)}). The first
term in the recursion takes care of the case where (i, j) is the only base pair in [i, j], i.e. (i, j) closes a hairpin
loop. The second term handles the case where there is an interior loop (or a bulge or a stack) closed by
(i, j) and (k, `). The third term takes care of all the structures where (i, j) closes a multi-loop. To reduce
complexity of the algorithm, the interior and bulge loop size can be limited to a maximum size of L, by
requiring that l > j − L in the above recursion.

Let QM(x) denote QM1,n(x), defined as follows. For 1 ≤ i ≤ j ≤ i + θ, define QMi,j(x) = 0, while for
j ≤ i + θ + 1 ≤ n,

QMi,j(x) =
1
c
·QMi,j−1(x) · e−c/RT · xd0

+
∑

sksj∈B,
i≤k<j

( 1
ck−i

·QBk,j(x) · e−(b+c(k−i))/RT · xd5 (7)

+
1
c
·QMi,k−1(x) ·QBk,j(x) · e−b/RT · xd6

)
,

where d5 = dBP (S[i,j],S[k,j]) and d6 = dBP (S[i,j],S[i,k−1] ∪ S[k,j]). Note that since QMi,j(x) computes the
partition function contribution under the assumption that [i, j] is part of a multi-loop, there will be exactly
one stem-loop structure in this region (the QB(x) term) or more than one (the QB(x)−QM(x) term).
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