“R” programming routines

Colony <- function(N.workers,N.mates,N.loci,R.rr){

colony calculation procedure
 Mates=matrix(rnorm(1*N.loci*N.mates),nrow=N.mates,ncol=N.loci)
mate matrix (mates by loci)

 Queen=matrix(rnorm(2*N.loci*1),nrow=2,ncol=N.loci)

queen matrix (allele by loci)

 Worker.Q=NULL

empty Worker.Q (matrix of queen alleles)
 q.position=rep(0,N.loci)
allelic positions along chromosome Vector of length N.loci filled with "0"

 q.chromosome=sort(sample(1:16,N.loci,replace=TRUE))
random sampling of chromosomes (N.loci times) and sorting in increasing order to make vector

 chrom.assigned=unique(q.chromosome)

put the chromosomes which contain loci in a vector

 for(j in chrom.assigned){

j will assume values of chromosomes that exist. i.e.: 1,5,9,15

 freq.chrom=sum(q.chromosome==j)

how often the particular chromosome occurs

 pos.number=sort(sample(1:101,freq.chrom,replace=FALSE))
draw (freq.chrom) random position without replacement for j chromosome and sort them

 q.position[q.chromosome==j]=pos.number

expanding q.position into a matrix (with chrom.assigned columns) and assign position numbers

 }

 select.allele=sample(1:2,N.workers,replace=TRUE)

makes a vector for all workers' starting phase of queen genotype

 Worker.Q=cbind(Worker.Q,Queen[select.allele,1])

c reates a vector of the first queen allele for each locus

 if(N.loci>1){

is true for all model parameterizations
 for(i in 2:N.loci){

attachment of the queen alleles for the remaining loci

 if(q.chromosome[i]>q.chromosome[i-1]){

if the next locus is on the next chromosome

 select.allele=sample(1:2,N.workers,replace=TRUE)

random determination of the phase of the next chromosome
 Worker.Q=cbind(Worker.Q,Queen[select.allele,i])
add a column with randomly picked queen alleles at the ith locus

 }

 else{

some genetic linkage because loci are on the same chromosome
 dis=q.position[i]-q.position[i-1]

calculating the distance between the two loci

 N.breaks=rbinom(N.workers,dis,R.rr)

calculating the number of breaks to the next locus

 odd=((N.breaks%%2)>0)
determines whether an odd number of recombination events has occurred
 prev.alleles = select.allele
passing on the phase of previous locus
 select.allele[odd] = 3-prev.alleles[odd]
determine phase of current locus, selecting allele of correct phase
 Worker.Q=cbind(Worker.Q,Queen[select.allele,i])

adding allele to the worker matrix of queen alleles
 }

 }

 }

 select.dc=sample(1:N.mates,N.workers,replace=T)

randomly pick a drone contribution (a vector of drones)

 Worker.D=Mates[select.dc,]

build up vector by picking length(select.dc) drone haplotypes

 Worker=(Worker.Q/N.loci)+(Worker.D/N.loci)

add paternal and maternal contribution equally to each locus, scale by locus number

 Gval= apply(Worker,1,sum)

calculate individual genotypic values

 Gmean=mean(Gval)

calculate the mean of the colony

 VGval=as.vector(var(Gval))

calculate the variance of the colony

 RGval=max(Gval)-min(Gval)

calculate the range of the colony

 list(Geno.Var=VGval,Geno.Mean=Gmean, Geno.Range=RGval)

display the variance, mean, and range in a list that can be accessed

}

Simu <- function(N.Loci,N.Mates,Rec.Rate,N.sim=5000,Colony.Size=2000){
main simulation procedure
 l=length(N.Loci)

setting loop control variable
 m=length(N.Mates)
setting loop control variable
 r=length(Rec.Rate)
setting loop control variable
 V.simulation=NULL

3D-Matrix for mean variance results
 V.of.V=NULL

3D-Matrix for variance of variance results

 Low=NULL

3D-Matrix for lower boundary of 95%CI for mean variance results

 High=NULL

3D-Matrix for upper boundary of 95%CI for mean variance results

 M.of.R=NULL

3D-Matrix for mean range results

 M.of.M=NULL

3D-Matrix for mean of mean value results

 V.of.M=NULL

3D-Matrix for variance of mean results

 for(i in 1:l){

Loop to run simulation with different numbers of loci

 for(j in 1:m){

Loop to run simulation with different numbers of mates

 for(k in 1:r){

Loop to run simulation with different numbers of recombination rates

 RVariances = NULL

Empty variables to accumulate results from subsequent loop (for o..)

 RMeans=NULL

 RRange=NULL

 for(o in 1:N.sim){

Loop to run simulation N.sim times (repeating the same scenario)

 colo=Colony(Colony.Size,N.Mates[j],N.Loci[i],Rec.Rate[k])

colo represents result vector with Geno.Var, Geno.Mean, Geno.Range

RVariances=c(RVariances,colo$Geno.Var)

Results accumulation in vector

RMeans=c(RMeans,colo$Geno.Mean)

RRange=c(RRange,colo$Geno.Range)

 }

 Means<-cumsum(RVariances)/(1:N.sim)

Vector that converges on the true mean of the colony variance (for initial assessment only)
 V.simulation=c(V.simulation,i,j,k,mean(RVariances))

Results matrices are gradually filled by concatenation

 dim(V.simulation)<-c(4,k+(j-1)*r+(i-1)*m*r)

dimensions of data

 Vnew.simulation=t(V.simulation)

transposition

 V.of.V=c(V.of.V,i,j,k,var(RVariances))

As above

 dim(V.of.V)<-c(4,k+(j-1)*r+(i-1)*m*r)

 Vnew.of.V=t(V.of.V)

 Low=c(Low,i,j,k,quantile(RVariances,.025))

As above

 dim(Low)<-c(4,k+(j-1)*r+(i-1)*m*r)

 Low.new=t(Low)

 High=c(High,i,j,k,quantile(RVariances,.975))

As above

 dim(High)<-c(4,k+(j-1)*r+(i-1)*m*r)

 High.new=t(High)

 M.of.R=c(M.of.R,i,j,k,mean(RRange))

As above

 dim(M.of.R)<-c(4,k+(j-1)*r+(i-1)*m*r)

 Range.new=t(M.of.R)

 M.of.M=c(M.of.M,i,j,k,mean(RMeans))

As above

 dim(M.of.M)<-c(4,k+(j-1)*r+(i-1)*m*r)

 Mean.new=t(M.of.M)

 V.of.M=c(V.of.M,i,j,k,var(RMeans))

As above

 dim(V.of.M)<-c(4,k+(j-1)*r+(i-1)*m*r)

 VarMean.new=t(V.of.M)

write.table(Vnew.simulation,file="M_V.txt",append=F)

Results are written into a permanent file

write.table(Vnew.of.V,file="V_V.txt",append=F)

write.table(Low.new,file="Lo_V.txt",append=F)

write.table(High.new,file="Hi_V.txt",append=F)

write.table(Mean.new,file="M_M.txt",append=F)

write.table(VarMean.new,file="V_M.txt",append=F)

write.table(Range.new,file="M_R.txt",append=F)

 }

 }

 }

}

Call of main simulation with evaluated parameter space:
Simu(c((1:5)*2,(1:7)*14),c(1:5,(1:7)*7),c(0.0003125,0.000625,0.00125,0.0025,0.005,0.01,0.02,0.04,0.08,0.16,0.32,0.64))
