Supplement

Equations S1

$V=\frac{d[P]}{d t}=-\frac{d[S]}{d t}=\frac{k_{\text {cat }}[S]\left[E_{\text {tot }}\right]}{[S]+K_{\mathrm{m}}}$
Equation 1. The Michaelis-Menten rate-law for initial reaction velocity. $k_{\text {cat }}$, turnover number; $[S]$, substrate concentration, $\left[E_{\text {tot }}\right]$, total enzyme concentration; K_{m}, Michaelis constant.
$V=\frac{k_{\text {cat }}[S]\left[E_{\text {tot }}\right]}{[S]+K_{\mathrm{m}}\left(1+\frac{[P]}{\left.K_{m P}\right]}\right)}-\frac{k_{-2}[P]\left[E_{\text {tot }}\right]}{[P]+K_{\mathrm{mp}}\left(1+\frac{[S]}{K_{m}}\right)}$
Equation 2. The reversible Michaelis-Menten rate-law for initial reaction velocity. $k_{\text {cat }}$, turnover number for the forward reaction; $[S]$, substrate concentration, $\left[E_{\text {tot }}\right]$, total enzyme concentration; $[P]$, product concentration; K_{m}, substrate concentration giving $V=0.5 V_{\max }$ in forward direction at [P]=0; K_{mp}, product concentration giving $V=0.5 V_{\max }$ in reverse direction at $[S]=0 ; k_{-2}$, turnover number for the reverse reaction
${ }_{[P]_{i+\Delta t}}=[P]_{i}+\frac{d[P]_{i}}{d t} \Delta t$
Equation 3. Equation for numeric integration of the initial reaction velocity $\left(V_{o}\right) .[P]_{i+\Delta t}$, product concentration at time point $i+\Delta t ;[P]_{i}$, product concentration at time point i,
$\frac{d[P]_{i}}{d t}$, reaction velocity at time point $i ; \Delta t$, the integration time step.
$[E]=\left[E_{0}\right]\left(\frac{1}{2}\right)^{\left.t / t_{1 / 2}\right)}$
Equation 4. Equation expressing the decay of enzyme as a function of time with respect to its half-life. [E_{o}], enzyme concentration at time zero; t, time; $t_{(1 / 2)}$, enzyme half-life.
$V=\frac{k_{\text {cat }}[S]\left[E_{\text {tot }}\right]}{[S]+K_{\mathrm{m}}\left(1+\frac{[P]}{K_{m P}}+\frac{[I]}{K_{i c}}\right)}-\frac{k_{-2}[P]\left[E_{\text {tot }}\right]}{[P]+K_{\mathrm{mp}}\left(1+\frac{[S]}{K_{m}}+\frac{[I]}{K_{i c}}\right)}$
Equation 5. Reversible Michaelis-Menten equation with competitive inhibition. [$]$, inhibitor concentration; $K_{\mathrm{i} \text { c }}$, enzyme-inhibitor dissociation constant for competitive inhibition; other notations as in equation 2.
$V=\frac{k_{\mathrm{cat}}[S]\left[E_{\mathrm{tot}}\right]}{[S]\left(1+\frac{[I]}{K_{\text {iu }}}\right)+K_{\mathrm{m}}\left(1+\frac{[P]}{K_{m P}}\right)}-\frac{k_{-2}[P]\left[E_{\mathrm{tot}}\right]}{[P]\left(1+\frac{[I]}{K_{\text {iu }}}\right)+K_{\mathrm{mp}}\left(1+\frac{[S]}{K_{m}}\right)}$
Equation 6. Reversible Michaelis-Menten equation with uncompetitive inhibition. $K_{\text {iu }}$, enzyme-inhibitor dissociation constant for uncompetitive inhibition; other notations as in equation 2.
$V=\frac{k_{\text {cat }}[S]\left[E_{\text {tot }}\right]}{[S]\left(1+\frac{[I]}{K_{\text {iu }}}\right)+K_{\mathrm{m}}\left(1+\frac{[P]}{K_{m P}}+\frac{[I]}{K_{i c}}\right)}-\frac{k_{-2}[P]\left[E_{\text {tot }}\right]}{[P]\left(1+\frac{[I]}{K_{\text {iu }}}\right)+K_{\mathrm{mp}}\left(1+\frac{[S]}{K_{m}}+\frac{[I]}{K_{i c}}\right)}$
Equation 7. Reversible Michaelis-Menten equation with mixed inhibition. Notations as in equations 2 \& 5-6. Note that non-competitive inhibition is obtained by setting $K_{\mathrm{iu}}=K_{\mathrm{ic}}$.
$I C^{\prime}{ }_{50}=[I] \times \frac{\left[P_{\text {inh }}\right]}{\left[P_{\text {uninh }}\right]-\left[P_{\text {inh }}\right]}$
Equation 8. Inhibitor concentration giving 50% observed inhibition. [$P_{\text {inh }}$], product concentration of the inhibited reaction; $\left[P_{\text {uninh }}\right]$, product concentration of the uninhibited reference reaction; other notations as in equation 5. At initial reaction conditions, $\mathrm{IC}^{\prime}{ }_{50}$ equals IC_{50}.
$\%$ Inhibition $=100 \times\left(\frac{\left[P_{\text {uninh }}\right]-\left[P_{\text {inh }}\right]}{\left[P_{\text {uninh }}\right]}\right)$
Equation 9. Observed inhibition (\%). Notations as in equation 8.
$\%$ Substrate $=100 \times\left(\frac{[P]-\left[P_{o}\right]}{\left[S_{o}\right]}\right)$
Equation 10. Degree of substrate depletion (\%). [P], accumulated product concentration; $\left[P_{\mathrm{o}}\right]$, product concentration at time zero; $\left[S_{\mathrm{o}}\right]$, substrate concentration at time zero.
$I C_{50}=K_{\text {ic }}\left(1+\frac{[S]}{K_{\mathrm{m}}}+\frac{[P]}{K_{\mathrm{mp}}}\right)$
Equation 11*. Relation between IC_{50} and K_{ic} for competitive inhibition and product inhibition. Notations as in equations $2 \& 5$.
$I C_{50}=K_{\mathrm{iu}}\left(1+\frac{K_{\mathrm{m}}}{[S]}+\frac{K_{\mathrm{m}}[P]}{K_{\mathrm{mp}}[S]}\right)$
Equation 12*. Relation between IC_{50} and K_{iu} for uncompetitive inhibition and product inhibition.
Notations as in equations $2 \& 6$.
$I C_{50}=\left(S+K_{m}+\frac{K_{\mathrm{m}}[P]}{K_{\mathrm{mp}}}\right) \div\left(\frac{[S]}{K_{\mathrm{iu}}}+\frac{K_{\mathrm{m}}}{K_{\mathrm{ic}}}\right)$
Equation 13*. Relation between IC_{50} and K_{i} values for mixed inhibition and product inhibition. Notations as in equations $2 \& 5-6$.
*Equations 11-13 were deduced by setting $0.5 V=V\left(\mathrm{IC}_{50}\right)$ with the expression for V from equation 2 to the left and the expression for V (with $[I]$ set to IC_{50}) from each of the equations 5-7 to the right. This gave 3 equations which were solved for IC_{50}, similar to Cheng and Prusoff ${ }^{1}$.

References

1. Cheng, Y. \& Prusoff, W.H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22, 3099-3108 (1973).
