Supporting Information of the article : An Efficient Kinetic Model for Assemblies of Amyloid Fibrils and Its Application to Polyglutamine Aggregation

Supplementary data S2: Application to PolyQ41 polymerization

Parameters of the PDE model [9]-[12] were estimated using experimental data on PolyQ41 polymerization measured by ThT. Two independent sets of experiments were carried out, using two different devices. The PolyQGST initial concentration ranged from $20\mu M$ to $420\mu M$. For experimental set 1, there were 9 curves for the concentration 100 μM , 13 for 285 μM and 3 for 420 μM . For experimental set 2, there were one curve for each concentration 20, 30, 40, 50 and 80 μM .

We first tested our model by considering each experimental curve separetely and thus computing a parameter set for each of them (see Main Text). We set $k_{on}^{min} = 1h^{-1}M^{-1}$, $x_1 = 0.1i_{max}$. An example of this parameter estimation is shown in Figure S1 for an initial PolyQGST concentration equal to $100\mu M$, in which i_0 was set to 3. For any value of i_0 among 1, 2, 3 or 4, the fit was excellent for all curves: in a least-square approach, we computed the error in L^2 adimensioned norm, calculated as $\frac{||f^{mes}-f^{sim}||_{L^2}}{||f^{mes}||_{L^2}}$,

where $||f||_{L^2} = \sqrt{\sum_i f_i^2}$, the values f_i being measured values at time t_i for the notation f^{mes} and simulated

values at time t_i for the notation f^{sim} . These errors ranged from 0.5% to 2%.

Secondly, we tested our model by fitting all curves of a given set of experiments simultaneously. Bestfits for experimental set 1 are drawn in Figures S2 and S3, respectively for $i_0 = 3$ and $i_0 = 1$. Global estimation errors for the two experimental sets ranged from 5% to 61% and decreased with i_0 value (Table S1).

The larger i_0 is, the more the lag-time changes with the concentration. Moreover, this dependence is too strong as soon as $i_0 \ge 2$. Indeed, for the lower concentrations, the simulation is too slow compared to experimental data, whereas it is too fast for the higher one, as shown for $i_0 = 3$ in Figure S2.

Figure Legends

Figure S 1. Parameter estimation considering each curve separately. Time evolution of PolyQ41 polymerized mass for an initial PolyQGST concentration equal to $285\mu M$. The experimental results are plotted in dotted line and the best-fit curve in solide line. i_0 is set to 3. Best-fit parameters are $k_I^+ = 0.67h^{-1}, k_I^- = 0, k_{on}^N = 7.8.10^2 M^{-2}h^{-1}, k_{off}^N = 5.10^{-2}h^{-1}, k_{on}^{max} = 1.2.10^9 M^{-1}h^{-1}, i_{max} = 2.10^6, x_2 = 0.2i_{max}.$

Figure S 2. Parameter estimation for Experimental Set 1 when i_0 is set to 3. Time evolution of the adimensioned PolyQ41 polymerized mass for an initial PolyQGST concentration equal to $100\mu M$ (A), $285\mu M$ (B), $420\mu M$ (C). Dotted curves represent experimental results. The solid curve is the best-fit. The global error in L^2 adimensioned norm was equal to 40% and the optimal parameters are very close to those of Figure 1.

Figure S 3. Parameter estimation for Experimental Set 1 when i_0 is set to 1. Time evolution of the adimensioned PolyQ41 polymerized mass for an initial PolyQGST concentration equal to $100\mu M$ (A), $285\mu M$ (B), $420\mu M$ (C). Dotted curves represent experimental results. The solid curve is the best-fit. The global error in in L^2 adimensioned norm was equal to 11%. The best-fit parameters are $k_I^+ = 0.65h^{-1}$, $k_I^- = 0$, $k_{on}^N = 7.10^{-6}M^{-1}h^{-1}$, $k_{off}^N = 5.10^{-2}h^{-1}$, $k_{on}^{max} = 2.3.10^9M^{-1}h^{-1}$, $x_2 = 0.1i_{max}$, $i_{max} = 5.10^6$.

Tables

i_0	Minimal error (adimensioned L^2 norm)	
	First set of experiments	Second set of experiments
1	11%	5%
2	37%	7%
3	44%	9%
4	59%	29%

Table S 1. Optimization results